

SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge Soft IP

User Guide

FPGA-IPUG-02006-1.4

April 2019

Contents

1. Introduction	4
1.1. Quick Facts	4
1.2. Features	4
1.3. Conventions	4
1.3.1. Nomenclature	4
1.3.2. Signal Names	4
2. Functional Description	5
2.1. Interface and Timing Diagram	6
2.1.1. SubLVDS Interface	6
2.1.2. MIPI D-PHY Interface	7
2.2. Clocking and Reset	8
2.3. Module Descriptions	9
2.3.1. SubLVDS Rx Wrapper	
2.3.2. CMOS2DPHY	11
2.3.3. IMX Framer	11
3. Parameter Settings	
4. IP Generation and Evaluation	
4.1. Licensing the IP	
4.2. Getting Started	
4.3. Creating IP in Clarity Designer	14
4.4. Generated IP Directory Structure and Files	
4.5. Running Functional Simulation	20
4.6. Simulation Strategies	21
4.7. Simulation Environment	22
4.8. Instantiating the IP	23
4.9. Synthesizing and Implementing the IP in a Top-Level Design	23
4.10. Hardware Evaluation	23
4.10.1. Enabling Hardware Evaluation in Diamond	23
4.11. Updating/Regenerating the IP	24
4.11.1. Regenerating an IP in Clarity Designer	24
References	25
Technical Support Assistance	25
Appendix A. Resource Utilization	
Appendix B. What is Not Supported	27
Revision History	

Figures

Figure 2.1. SubLVDS Input Data, Clock and Sync Signal Timing (4k2k, 10-bit Data, 10-Lanes)	6
Figure 2.2. High-Speed Data Transmission	8
Figure 2.3. SubLVDS to CSI-2 Clock Domains	8
Figure 2.4. Top Level Block Diagram	9
Figure 4.1. Clarity Designer Window	13
Figure 4.2. Starting Clarity Designer from Diamond Design Environment	14
Figure 4.3. Configuring SubLVDS to MIPI CSI-2 IP in Clarity Designer	15
Figure 4.4. Configuration Tab in IP User Interface	16
Figure 4.5. Video Tab in IP User Interface	17
Figure 4.6. Protocol Timing Parameters Tab in IP User Interface	18
Figure 4.7. SubLVDS to MIPI CSI-2 IP Directory Structure	19
Figure 4.8. Simulation Environment Block Diagram	21
Figure 4.9. Configuration with MISC_ON Disabled	22
Figure 4.10. Configuration with MISC_ON Enabled	22
Figure 4.11. IP Regeneration in Clarity Designer	24

Tables

Table 2.1. Sync Code Details 7 Table 2.2. Top Level Port Description 10 Table 2.3. Indicator States 11 Table 3.1. SubLVDS to CSI-2 IP Parameters 12 Table 4.1. Files Generated in Clarity Designer 19 Table 4.2. Testbench Directives 21 Table A.1. Resource Utilization* 26	Table 1.1. SubLVDS to MIPI CSI-2 IP Quick Facts	4
Table 2.2. Top Level Port Description 10 Table 2.3. Indicator States 11 Table 3.1. SubLVDS to CSI-2 IP Parameters 12 Table 4.1. Files Generated in Clarity Designer 19 Table 4.2. Testbench Directives 21 Table A.1. Resource Utilization* 26	Table 2.1. Sync Code Details	7
Table 2.3. Indicator States 11 Table 3.1. SubLVDS to CSI-2 IP Parameters 12 Table 4.1. Files Generated in Clarity Designer 19 Table 4.2. Testbench Directives 21 Table A.1. Resource Utilization* 26	Table 2.2. Top Level Port Description	
Table 3.1. SubLVDS to CSI-2 IP Parameters 12 Table 4.1. Files Generated in Clarity Designer 19 Table 4.2. Testbench Directives 21 Table A.1. Resource Utilization* 26	Table 2.3. Indicator States	
Table 4.1. Files Generated in Clarity Designer 19 Table 4.2. Testbench Directives 21 Table A.1. Resource Utilization* 26	Table 3.1. SubLVDS to CSI-2 IP Parameters	
Table 4.2. Testbench Directives 21 Table A.1. Resource Utilization* 26	Table 4.1. Files Generated in Clarity Designer	
Table A.1. Resource Utilization*	Table 4.2. Testbench Directives	21
	Table A.1. Resource Utilization*	

1. Introduction

Many Image Signal Processors (ISP) or Application Processors (AP) use the Mobile Industry Processor Interface (MIPI[®]) Camera Serial Interface 2 (CSI-2) standard for image sensor inputs. However, some high resolution CMOS image sensors use a proprietary SubLVDS output format. The Lattice Semiconductor SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge IP for Lattice Semiconductor CrossLink[™] solves the interface mismatch between subLVDS output image sensor and an ISP/AP using MIPI CSI-2 interface.

This user guide is for SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge Soft IP design version 1.x.

1.1. Quick Facts

Table 1.1 provides quick facts about the SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge IP for CrossLink devices.

Table 1.1. SubLVDS to MIPI CSI-2 IP Quick Facts

		SubLVDS to MIPI CSI-2 IP Configuration
		10-Lane Configuration
Core Requirements	FPGA Families Supported	CrossLink
	Target Device	LIF-MD6000-6MG81I
	Data Path Width	10-bit (RAW10) or 12-bit (RAW12) input data to D-PHY serial data
Resource Utilization	LUTs	3711
	sysMEM™ EBRs	12
	Registers	2388
	Lattice Implementation	Lattice Diamond [®] 3.8
Design Tool Support	Synthesis	Lattice Synthesis Engine (LSE)
Design roor support	Synthesis	Synopsys [®] Synplify Pro [®] L-2016.03L or later
	Simulation	Aldec [®] Active HDL [™] 10.3 Lattice Edition

1.2. Features

The key features of the SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge IP are:

- Supports four, six, eight or ten data lanes from an image sensor in 10-bit (RAW10) or 12-bit (RAW12) pixel widths
- Generates XVS and XHS for image sensors in slave mode
- Interfaces to MIPI CSI-2 Receiving Devices with four data lanes up to 6 Gb/s total bandwidth

1.3. Conventions

1.3.1. Nomenclature

The nomenclature used in this document is based on the Verilog language. This includes radix indications and logical operators.

1.3.2. Signal Names

Signal names that end with:

- _i are input pins.
- _*o* are output pins.
- _*io* are bi-directional pins.
- _n_i are active low.

2. Functional Description

The SubLVDS to MIPI CSI-2 Interface Bridge converts, serialized, source synchronous SubLVDS data from an Image Sensor to MIPI CSI-2. It consists of one SubLVDS differential clock lane and up to 10 SubLVDS differential data lanes. The output from the chip is a MIPI D-PHY interface supporting HS (High Speed) and LP (Low Power) modes during vertical and horizontal blanking.

The SubLVDS data received at the input is deserialized using iDDRx4 (1:8 gearing) or iDDRx8 (1:16 gearing) gearbox. This converts each double data rate lane to a single data rate 8-bit or 16-bit bus for slower operating speeds within the system. The data from each lane is forwarded to a word alignment module which converts the deserialized data to 10-bit pixels.

The output of this module is a large data bus of pixels (pixdata_o) with a width dependent on the number of data lanes being used, dvalid_o, fv_o and lv_o signals. The dvalid_o control signal goes active high on clock cycles that have valid pixel data. The fv_o goes high at the beginning of an active video frame and low at the end of the frame. Similarly, the lv_o goes active high or low at the beginning or end of an active video line respectively.

The multi-pixel bus is then routed to the MIPI CSI-2 module. This module contains several modules to perform the pixel to MIPI CSI-2 conversion. The first module is the pixel to byte module. This module's function is to convert pixel data into HS byte packets. The module creates a frame start or frame end MIPI HS short packet when the fv_o goes high or low respectively. The module additionally creates HS long packets based on the lv_o going high and pixel data being seen as valid based on dvalid_o. There are two more modules, the packet header and packet footer, which handle appending the MIPI packet header and footer and calculating the appropriate, included checksums.

The Tx global operations controller provides all data control for the MIPI output data. This module allows you to set delay controls for when LP and HS modes start and end on the clock and data lanes as these delays changed based on the speed of data transfer. Delay controls include the number of clocks difference between when the clock lane goes from LP to HS mode and when the data lanes go from LP to HS mode.

All parameters are based on the MIPI byte clock which operates at a ¼ the speed of the MIPI bit clock output. The MIPI D-PHY Tx channels are put into low-power (LP) mode when not sending out packets, and when sending packets, the MIPI D-PHY Tx channels are in high-speed (HS) mode. However, there is a wait time needed between any LP and HS transition (and vice versa) as specified by the MIPI D-PHY Specification. Because of this wait time requirement on the MIPI D-PHY Tx side of the bridge, the 1st line of each frame is dropped through the bridge. The wait time (horizontal blanking period) between start of FV (frame valid) and start of LV (line valid), end of LV and end of FV, and end of LV and start of LV can be as long as 200-byte clock cycles or 650 input clock cycles depending on the lane rate.

In addition, the MIPI D-PHY Tx can only handle pixels that consist of a number of bytes that is divisible by 8. In order to support all input resolutions, the received data is cropped to be divisible by 8 bytes and by 5 bytes (CSI-2 protocol for RAW10). The Word Count (WC) you provided must include the EAV (4*no. of lanes pixels). EAV is the end of sync code. The cropping affects only the EAV if cropped pixels are less than or equal to 4 times the number of lanes pixels. It affects only the ignored region of active pixels if cropped pixels is more than 4 times the number of lanes pixels.

The design includes the IMX framer module. Some image sensors require a method for controlling XVS (vertical) and XHS (horizontal) indication signals. For these image sensors, the SubLVDS-to-CSI-2 Soft IP in the CrossLink FPGA can provide the XVS and XHS controls using the IMX Framer module.

2.1. Interface and Timing Diagram

2.1.1. SubLVDS Interface

Figure 2.1 shows the sync signal and data output timing during 10-bit length serial received from the image sensor. The horizontal and vertical timing of the data are controlled by the XVS and XHS sync signals. The sync code is added before and after the pixel data. See Table 2.1 for the sync code details.

Figure 2.1. SubLVDS Input Data, Clock and Sync Signal Timing (4k2k, 10-bit Data, 10-Lanes)

LVDS Out	out Bit No.		Sync			
12-bit Output	10-bit Output	1st Word	2nd Word	3rd Word	4th Word	
11	9	1	0	0	1	
10	8	1	0	0	0	
9	7	1	0	0	V	1: Blanking line 0: Except blanking line
8	6	1	0	0	н	1: End sync code 2: Start sync code
7	5	1	0	0	Р3	
6	4	1	0	0	P2	Protoction bits
5	3	1	0	0	P1	
4	2	1	0	0	PO	
3	1	1	0	0	0	
2	0	1	0	0	0	
1	_	1	0	0	0	
0	—	1	0	0	0	
			Protect	ion Bits		
v	н	P3	P2	P1	P0	
0	0	0	0	0	0	
0	1	1	1	0	1	
1	0	1	0	1	1	
1	1	0	1	1	0	

Table 2.1. Sync Code Details

2.1.2. MIPI D-PHY Interface

Figure 2.2 shows that prior to the HS mode data transfer all clock and data lanes are in the LP11 state (1.2 V on the P and N channel) as defined in MIPI D-PHY Specification version 1.1.

The clock lane goes to the LPO1 state (0 V on the P channel and 1.2 V on the N channel) then the LPO0 state (0 V on the P channel and 0 V on the N channel). After that, the clock lane goes into HS mode with SLVS200 signaling (Vcm=200 mV, Vdiff=±100 mV) and holds an HSO state (differential 0 state of P channel=100 mV and N channel=300 mV when termination of the receiver is turned on). Then the clock starts shortly after.

When the HS clock is running, the data lanes follow a similar procedure going from LP11 to LP01, LP00, and HS0 states. Then the HS-SYNC sequence is driven on the line followed by the packet header and data payload. At the end of the transfer the data lanes first go back into LP mode by going to LP00 then LP11 states. The clock lane follows shortly after.

Figure 2.2. High-Speed Data Transmission

2.2. Clocking and Reset

The Rx clock input is from an external source that is an image sensor and should be connected to a dedicated SubLVDS edge clock pin. The D-PHY PLL reference clock is from the SubLVDS Rx (pixclk_i) and it generates a byte clock for the cmos_2_dphy modules. Clock source of the IMX framer is also external and typically the same clock source of the image sensor.

Figure 2.3. SubLVDS to CSI-2 Clock Domains

Active low reset is used in the system and it is connected to reset ports of all modules. Resets for each clock domain are synced to their respective clock domains.

The initialization sequence for this soft IP is the following:

- 1. Assert reset signal for 500 ns.
- 2. The design waits for Hard D-PHY to lock (pll_lock_o).
- 3. Wait for tinit_done_o to assert. The design drives the D-PHY to a Stop State (LP-11) for a period longer than tINIT. The Hard D-PHY can force the lane module into transmit mode and generate stop state.
- 4. High-speed data transmission follows.

2.3. Module Descriptions

The top level design (*sublvds_2_csi2_ip_wrapper.v*) instantiates the soft IP module (*sublvds_2_csi2_ip.v*). The *sublvds_2_csi2_ip.v* consists of three main modules:

- *sublvds_rx_wrapper.v* It is composed of a deserializer and word alignment module.
- *cmos_2_dphy_ip.v* It consists of the Pixel to byte, Packet Footer, Packet Header, Tx Global Operations Controller and D-PHY Common Interface Wrapper.
- *imx_framer.v* It provides control mechanism (XVS and XHS) for the rate at which line and frame is read out. This is used for image sensors that operate in slave mode.

Figure 2.4. Top Level Block Diagram

^{© 2016-2019} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 2.2 lists the I/O ports of the SubLVDS to CSI-2 block.

Table 2.2. Top Level Port Description

Port Name	Direction	Description		
Clock and Reset				
reset_n_i	Input	Asynchronous reset; resets all modules within top level (active low).		
		SubLVDS Interface		
clk_p_i	Input	Subl VDS serial input clock		
clk_n_i	Πρατ			
d0_p_i	Input	Subl VDS Rx data0		
d0_n_i				
d1_p_i ^{2,3} d1_n_i ^{2,3}	Input	SubLVDS Rx data1		
d2_p_i ^{2,3} d2_n_i ^{2,3}	Input	SubLVDS Rx data2		
d3_p_i ^{2,3} d3_n_i ^{2,3}	Input	SubLVDS Rx data3		
d4_p_i ^{3,4} d4_n_i ^{3,4}	Input	SubLVDS Rx data4		
d5_p_i ^{3,4} d5_n_i ^{3,4}	Input	SubLVDS Rx data5		
d6_p_i ^{4,5} d6_n_i ^{4,5}	Input	SubLVDS Rx data6		
d7_p_i ^{4,5} d7_n_i ^{4,5}	Input	SubLVDS Rx data7		
d8_p_i⁵ d8_n_i⁵	Input	SubLVDS Rx data8		
d9_p_i⁵ d9_n_i⁵	Input	SubLVDS Rx data9		
		CSI-2 Interface		
clk_p_o clk_n_o	Output	MIPI CSI-2 serial HS clock lane		
d0_p_io d0_n_io	Bi-directional	MIPI CSI-2 Tx data0		
d1_p_o d1_n_o	Output	MIPI CSI-2 Tx data1		
d2_p_o d2_n_o	Output	MIPI CSI-2 Tx data2		
d3_p_o d3_n_o	Output	MIPI CSI-2 Tx data2		
		IMX Framer		
inck_i ¹	Input	Input clock for IMX Framer. This clock is shared as the input clock to the image sensor.		
xvs_0 ¹	I/O	Image sensor slave readout vertical control signal		
xhs_o1	l/vO	Image sensor slave readout horizontal control signal		

Notes:

1. Used only when mode = slave; when mode = master, xvs_o and xhs_o are driven to high-impedance

- 2. Used only when LANE_WIDTH = 4
- 3. Used only when LANE_WIDTH = 6
- 4. Used only when LANE_WIDTH = 8
- 5. Used only when LANE_WIDTH = 10

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.3.1. SubLVDS Rx Wrapper

The sublvds_rx_wrapper module is composed of a deserializer and a word alignment module.

The deserializer converts each double data rate lane to a single data rate 8-bit or 16-bit bus at slower operating speeds within system.

The word alignment module receives the 8-bit (1:8 gearing) or 16-bit (1:16 gearing) deserialized data and converts it to 10-bit or 12-bit pixel data according to the set configuration of data type (RAW10 or RAW12). The output of the module is a multi-pixel bus, a dvalid_o, fv_o and lv_o control signal. The dvalid_o control signal goes active high on clock cycles that have valid pixel data. There is also a parser inside that looks at the recognition codes from the beginning (SAV) and the end (EAV) of each data packet if they are part of an active video line or not. The fv_o goes high at the beginning of an active video frame and low at the end of the frame. Similarly, the lv_o goes active high or low at the beginning or end of an active video line respectively.

Table 2.3. Indicator States

Sync Code	FV State	LV State
SAV (valid line)	1	1
EAV (valid line)	1	0
SAV (invalid line	0	0
EAV (invalid line)	0	0

2.3.2. CMOS2DPHY

The cmos_2_dphy_ip is a soft IP block that is reused in the SubLVDS-to-CSI-2 IP. This module accepts the large multiplepixel bus from the SubLVDS Rx and serializes it into HS data packets following the MIPI CSI-2 Specification. It consists of the Pixel2byte, Packet Footer, Packet Header, Tx Global Operations Controller and D-PHY Common Interface Wrapper.

The Pixel2byte block converts the pixel data to MIPI byte data based on the number of bits per pixel, the data type and the number of MIPI D-PHY lanes that are to be used. This module should also be able to handle cases of sending in multiple pixels per clock cycle for cases where the pixel clock is too fast for the fabric.

The packet footer block generates the CRC16 checksum based on the byte data coming in and an enable. The packet header block generates and appends the packet header and footer to the data payload.

The Tx global operations controller controls HS request path and timing using parameters. Currently LP-request, escape mode and turnaround path are not supported. This block should follow the requirement from MIPI D-PHY Specification version 1.2 section 6 – Operating Modes for Control and High-Speed Data Transmission.

The D-PHY Common Interface (DCI) wrapper is used as the wrapper of the MIPI D-PHY IP. This is used to serialize the incoming byte data and transmits to D-PHY receiver. The DCI is used to make a connection between the PHY hard IP and higher protocol layers. Based on the Tx global operation state, it determines how to enable HS or LS mode for data transfer.

2.3.3. IMX Framer

The imx_framer module is for image sensors that operate in Slave mode. Image sensors that use this mode must have their XHS and XVS driven by another component. In such case, the SubLVDS-to-CSI-2 IP drives the signals in a similar manner to frame valid and line valid indicators. It provides a control mechanism for the rate at which each line and frame is read out. Timing of these two signals is defined in the Image Sensor datasheet. Timing of the XHS and XVS is shown in Figure 2.1.

3. Parameter Settings

Table 3.1 shows the user parameters used to generate the SubLVDS to MIPI CSI-2 IP.

Parameter	Attribute	Options	Description
		4	
Number of Py Japas	Licor Input	6	Solacts the number of Px SubLVDS data lanes
Number of IX lanes	oser input	8	Selects the number of hx Subly DS data lanes.
		10	
		8	Select gearing of Rx side.
Rx Gear	User Input	16	Only 4 Rx lanes support both 1:8 and 1:16 gearing.
		Ndiainanna 220 Ndh /a	The 6, 8 and 10 Rx lanes support only 1:8 gearing.
		Maximum: 320 Mb/s	Target Ty line rate in Mb/s. By line rate is not the same as
Ty Line Rate	Liser Input	4 and 6 Ry lane -900 Mb/s	Target 1X line rate in MD/S. KX line rate is not the same as $T_{\rm V}$
	oser input	4 and 0 KM arre = 300 Mb/s	Ry line rate depends on the number of Ry lanes
		10 Rx lane - 1500 Mb/s	ix line face depends of the number of tx lanes.
			Select for desired Tx clock mode.
Tx D-PHY Clock Mode	User Input	Continuous	Continuous – High-speed clock only
		Non-continuous	Non-continuous – High-speed and Low-power switching
			This parameter can be configured to ensure that the
			initialization period of the D-PHY slave is met. The D-PHY
tINIT_SLAVE Value	Liser Innut	1 – 32767	specification places a minimum period of 100 μ s, but this
	oser input	1 52767	parameter may be increased depending on the receiver
			requirement. During this period, all incoming data is
			ignored by the bridge.
Bypass tINIT Counter	User Input	Enable	Select this option if you want to disable or bypass the tINI I
		Disable	counter inside the design to save LUTS.
Miscellaneous	User Input	Disable	If enabled, it probes internal signals for debug purposes.
		RAW10	
Data Type	User Input	RAW12	Selects desired data type.
_			Specify the total number of bytes for active pixels in a line
			with the EAV (4* number of Rx lane).
			Word Count = ((Number of active pixel per line) +
Word Count	User Input	1 – 65536	(4·(Number of Rx lanes))·(Bits per pixel) / 8
			For example RAW10, 1920x1080p60 resolution, 10 Rx
			lanes:
			Word Count = $(1920+(4\cdot10))\cdot(10) / 8 = 2450$
Virtual Channel ID	User Input	U-3 Master	Virtual channel ID assignment for packets from channel 1
Image Sensor Mode	User Input	Slavo	set the mode of the image sensor. In slave mode, it enables
		Slave	Set the number of lines XVS is driven high. This parameter
ν τοται	User Input	Decimal value	is needed in slave mode. When in master mode, disregard
	oser input		this entry.
			Set the number of INCK clocks XHS is driven high. This
H TOTAL	User Input	Decimal value	parameter is needed in slave mode. When in master mode,
			disregard this entry.
			Set the number of INCK clocks XVS and XHS is driven low.
V_H_BLANK	User Input	Decimal value	This parameter is needed in slave mode. When in master
			mode, disregard this entry.

Table 3.1. SubLVDS to CSI-2 IP Parameters

4. IP Generation and Evaluation

This section provides information on how to generate the Lattice SubLVDS to CSI-2 IP code using the Diamond Clarity Designer, and how to run simulation, synthesis and hardware evaluation.

4.1. Licensing the IP

An IP-specific license is required to enable full, unrestricted use of the SubLVDS to CSI-2 IP in a complete, top level design. The SubLVDS to CSI-2 IP is available free of charge.

Request your license by going to the link http://www.latticesemi.com/en/Support/Licensing and request the free Lattice Diamond license. In this form, select the desired CrossLink IP for your design.

You may download or generate the SubLVDS to CSI-2 IP and fully evaluate the through functional simulation and implementation (synthesis, map, place and route) without the IP license. The SubLVDS to CSI-2 IP also supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP that operate in hardware for a limited time (approximately four hours) without requiring an IP license. See the Hardware Evaluation section for further details.

HOWEVER, THE IP LICENSE IS REQUIRED TO ENABLE TIMING SIMULATION, TO OPEN THE DESIGN IN DIAMOND EPIC TOOL, OR TO GENERATE BITSTREAMS THAT DO NOT INCLUDE THE HARDWARE EVALUATION TIMEOUT LIMITATION.

4.2. Getting Started

The SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge is available for download from the Lattice IP Server using the Clarity Designer. The IP files are automatically installed using ispUPDATE technology in any customer-specified directory. After the IP has been installed, the IP is available in the Clarity Designer user interface as shown in Figure 4.1.

4.3. Creating IP in Clarity Designer

The Clarity Designer tool is used to customize modules and IPs and place them into the device's architecture. Besides configuration and generation of modules and IPs, Clarity Designer can also create a top module template in which all generated modules and IPs are instantiated.

The following describes the procedure for generating SubLVDS to MIPI CSI-2 IP in Clarity Designer.

Clarity Designer can be started from the Diamond design environment.

To start Clarity Designer:

- 1. Create a new empty Diamond project for LIFMD family devices.
- 2. From the Diamond main window, choose **Tools** > **Clarity Designer**, or click 🕮 in Diamond toolbox. The Clarity Designer project dialog box is displayed.
- 3. Select and or fill out the following items as shown in Figure 4.2.
- Create new Clarity design Choose to create a new Clarity Design project directory in which the SubLVDS to CSI-2 IP is generated.
- **Design Location** Clarity Design project directory path.
- Design Name Clarity Design project name.
- HDL Output Hardware Description Language Output Format (Verilog).

The Clarity Designer project dialog box also allows you to open an existing Clarity Designer project by selecting the following:

- Open Clarity design Open an existing Clarity Design project.
- **Design File** Name of existing Clarity Design project file with .sbx extension.
- 4. Click the **Create** button. A new Clarity Designer project is created.

🚸 Lattice Diamond - Reports							
File Edit View Project Design Process Tools Window	Help						
2 • 🖄 • E 🖉 🚔 🗠 @ X tù E. 🔒 🖽 🧠 🔍	9, 9, 12 10 10 10 10						
📽 📰 🤤 🖻 😑 🏭 🍕 🕸 📓 🗟 🌆 😑 🤤 🖕 🖪 g	2 😕 🖪 🖪 🗐 📰 🚱						
File List & X	🚯 Start Page 🗈 🛅 Repor	rts 🗵					8 ×
sublvds_2_csi2	impl1						e ×
LIF-MD6000-6MG81I	Decian Summany						
4 🎍 Strategies	d = Dreject				sublvds 2 csi2 pro	ject summary	
📴 Area	Project Project Project	Modul	le Name:		sublvds 2 csi2	Synthesis:	Lattice LSE
I/O Assistant	# Process Reports	Imple	ementation Name:		impl1	Strategy Name:	Strategyl
Br Timing	Map	Last	Process:			State:	
Strategy1	Place & Route	Targe	et Device:		LIF-MD6000-6MG81I	Device Family:	LIEMD
4 iii impl1	Signal/Pad	Devi	ce Type:		LIF-MD6000	Package Type:	CSFBGA81
Input Files	Ch Ritstream/IEDEC			-	6	Operating conditions:	IND
Synthesis Constraint Files	🔺 📫 🚼 Clarity Designer		8 🐹		sublvds_2_cs12.lpf		
LPF Constraint Files	Create any Chatty day	1			impl1/sublvds 2 csi2 impl1.prf		
sublvds_2_csi2.lpf	Create new Clarity desi	agn			3.9.0.98.2	Patch Version:	
🁪 Debug Files	Design Location: s/j	jaldueso/Documents/SNOW/SIP6	5/dia_3_9 Browse		2017/01/25 18:42:40		
Script Files	Design Name:				C:/Users/jaldueso/Documents/SNOW/SII	P6/dia 3 9/impl1	
Analysis Files	UDI Ortente		-		C:/Users/ialdueso/Documents/SNOW/SI	P6/dia 3 9/sublyds 2 cs12.ldf	
Programming Files	Not output.	aniog	-				
	Design File: Cr/Users/Joli Start Carely Designer M Carely Designer M double-click the module ca module Stat. By generation is not availal generation Diamond Project Diamond Design Name: C Diamond Design Name: C Diamond Design Name: C	douses/Documents/SHOW/SIP6/ to generate a single Component angle module generation mode clamy Designer catalog to stat aubhote_7_ces2 Cc/Users/Jaldueso/Documents/SI LatticeLSE	SBX SBX SBX In this mode, you can repending a single mode for IP: NOW/SP6/de_3_9				
File List Process Hierarchy							
Output		Create	Cancel Help				e ×
Done: design load finished with (12) errors, and	(14)						*
Starting: "sbp_design open -dsgn "C:/Users/jaldue	so/Documents/SNOW/SIP6/dia	a_3_9/sip6/sip6.sbx""					
Starting: "prj_src remove "C:/Users/jaldueso/Docu	ments/SNOW/SIP6/dia_3_9/si	ip6/sip6.sbx==					
Starting: parse design source files	d/2 9 w64/ionfean/unerware	/Mm/ovamupore upappr	e/lifed a				
Done: design load finished with (0) errors, and (0) warnings	E/ NI/ SININESIS_NEADER	(5) IIIII. V				
Tcl Console Output Error* Warning* Info*							•
Ready							Mem Usage: 140,336 K

© 2016-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

To configure the SubLVDS to MIPI CSI-2 IP in Clarity Designer:

1. Double-click **SubLVDS to MIPI CSI-2** in the IP list of the System/Planner view. The **sublvds_to_csi2** dialog box is displayed as shown in Figure 4.3.

🎄 Lattice Diamond - Clarity Decigner (C-/Llsers/jaldueso/Documents/SI	IOW/SIP6/dia 2.9/sip6/sip6.sby)						1 52
Sile Edite View Designet Designet (C) Osers/Jaiddeso/Documents/Ja	1044/34F0/018_3_3/31p0/31p0/30A/						
File Edit view Project Design Process loois window Help							
· 2 • 2 • 8 • 8 # 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 9 9 9							
1 🖉 🗃 🖨 🗟 🗟 🛞 🎛 🍕 🕸 🖻 🗟 😘 🔏 😂 💁							
File List & X	1 Start Page 🛛 🛅 Reports 🖂	🔠 Clarity Desig	ner 🛛				e x
# lip sublvds_2_csi2	🕞 Generate 🛛 😤 Refresh						_
LIF-MD6000-6MG81I	Catalon Builder						
A Strategies	Catalog Builder						
Rea	Name	Version	^	Subl VDS	to MIDLCSL2 Im	ago Sonsor Interfaco Bridgo	^
🛞 I/O Assistant	@ convert	1.3		SUDEVDS	10 MIFT 031-2 III	age Sensor interface bridge	
P Ouick		4.6					
D Timing		1.5		Device Support: LIF	MD		
Strategy1	፼ Ifsr	3.7		Overview: Many Imag	e Signal Processor (ISP) or Appli	cation Processors (AP) use the MIPI CSI-2 standard for image sensor	
4 🔢 impl1	⊞ mult_add_sub	2.8		inputs. However, some	high resolution CMOS image ser	isors use a proprietary SubLVDS output format. The Lattice SubLVDS to	5
Input Files	⊞ mult_add_sub_sum	2.7		MIPI CSI-2 Image Sen	sor Interface Bridge IP for CrossLi	nk solves the interface mismatch between subLVDS output image	
Synthesis Constraint Files	8 multiplier	4.9		sensor and an ISP/AP	using MIPI CSI-2 interface.		
LPF Constraint Files		2.8		Eastures:			
sublyds 2 csi2.lpf	Isin-cos_table	1.6		reatures:			
Debug Files	Subtractor	3.5				-2 Specification v1.1	=
Script Files	A Memory_Modules		🌮 sublvds to	csi-2	8 8	ge sensor in 10-bit (RAW10) or 12-bit (RAW12) pixel widths	
Analysis Files	4 🖄 Distributed_RAM		Name			re mode	
Programming Files	distributed_dpram	3.9				data lanes up to 6 Gbps total bandwidth	
• · · · • · · · · • · · · · · · · · · · · · · · · · · · ·	a distributed rom	2.8	Instance Pat	h: C:/Users/jaldueso/Docur	ments/SNOW/SIP6/dia_3_9/sip6		
	distributed spram	3.9	Instance Nam	ne: sublvds_2_csi2			
	EBR_Components						
	፼ ram_dp	6.5	sublvds to cs	-2 1.2			
	am_dp_true	7.5	Macro Type:	IPCFG	Version: 1.2		
	每 ram_dq	7.5	Marca Marries	cubleds to est-2			
	₽ rom	5.4	Maco Name:	SUDIVOS to CSI-Z			
	每 fifo	5.1	Module Outp	ut: Verilog	•		
	₽ fifo_dc	5.8	Device Family	y: LIFMD			
	aram_based_shift_register	5.2	Dart Name:	LTE-MD6000-6MC01T			
	4 強 IP		Fait Name.	EIF-MD0000-0MG811		to 1, 2016 021, exister	
	4 🖄 Audio, Video and Image Processi	ng	Synthesis:	lse		be L-2016.03L of later	
	csi2_to_csi2	1.1					
	🖆 d-phy to cmos	1.2				ht-click on the IP icon and select Install <ip name="">. For complete</ip>	
	🖾 dsi to dsi	1.1			Customize Cancel	larity Designer User Manual. Additional information on Lattice's	
	🖆 fpd-link to dsi	1.2		1		on: Lattice Intellectual Property	
	sublvds to csi-2	1.2	*	Revision History:			-
mile transmission ille serveder	📕 Lattice IP 🛑 Lattice IP Server Imp	ort IP Diamon	d	About			
Hie List Process Hierarchy							
Output							8 ×
WARNING - Create a new implementation in an existing	sub-directory 'impl1'.						*
(VERI-1482) Analyzing Verilog file C:/lscc/diamond/3.	9 x64/ispfpga/userware/NT/SYNTHES	IS HEADERS/1	lifmd.v				
Done: design load finished with (0) errors, and (0) w	arnings	_					
Starting: "prj_project save"							=
Starting: "sbp_design new -dsgn "sip6" -path "C:/User	s/jaldueso/Documents/SNOW/SIP6/di	.a_3_9/sip6"	-device "I	IF-MD6000-6MG81I""			
	11 3 1 /m · · / mmm / 1						
starting: "sbp_design new -dsgn "sip6" -path "C:/User	s/jaidueso/Documents/SNOW/SIP6/di	.a_3_9/sip6"	-device "I	JIF-MD6000-6MG81I""			
							Ψ.
Tcl Console Output Error Warning* Info							
Ready						Mem Usage: 279),992 K

Figure 4.3. Configuring SubLVDS to MIPI CSI-2 IP in Clarity Designer

- 2. Enter the **Instance Name**.
- 3. Click the **Customize** button. An IP configuration interface is displayed as shown in Figure 4.4. From this dialog box, you can select the IP parameter options specific to your application.
- 4. Input valid values in required fields in the **Configuration** tab.

		Configuration \ Video \ Protoc	col Timing Parameters \	
SubLVDS to CSI-2 → reset_n_i → inck_i → clk_p_i	clk_p_0 ↔ clk_n_0 ↔ d0_p_io ↔	Receiver Number of RX Channels Number of RX Lanes RX Gear Transmitter Number of TX Channels Number of TX Lanes	1 10 6 8 11 X Interface	SubLVDS
$ \begin{array}{c} \rightarrow d0_{D_i} \\ \rightarrow d0_{D_i} \\ \rightarrow d1_{D_i} \\ \rightarrow d1_{D_i} \\ \rightarrow d1_{D_i} \\ \rightarrow d2_{D_i} \\ \rightarrow d2_{D_i} \\ \rightarrow d3_{D_i} \\ \rightarrow d4_{D_i} \\ \rightarrow d4_{D_i} \\ t_{D_i} \\ \end{array} $	d]_p_o ↔ d]_p_o ↔ d2_p_o ↔ d2_p_o ↔ d3_p_o ↔ d3_n_o ↔ xvs_o ↔ xhs_o ↔ done_o →	TX Gear Clock RX Line Rate TX Line Rate DPHY Clock Frequency TX DPHY Clock Mode Byte Clock Frequency Pixel Clock Frequency	C Continuous	(Mbps) (320 - 1500 Mbps) (MHz) (MHz) (up to 112.5 MHz) (up to 150.0 MHz)
		Initialization ttNIT_SLAVE Value ☐ Bypass ttNIT counter Miscellaneous ☑ Enable miscellaneous st	(Number of byte cl	ock cycles, > 0)
		Configure	Close	Help

Figure 4.4. Configuration Tab in IP User Interface

5. To configure data type, virtual channel ID, word count and IMX Framer settings (when image sensor is in slave mode) click the **Video** tab as shown in Figure 4.5.

Configuration Gener	ate Log			
		Configuration Video VP	rotocol Timing	Parameters \
Subl V	DS to (SI-2	Video Packet Data Type Virtual Channel ID Word Count	RAW10 00 200	▼ 2'box (binary) (1 - 65536)
→ reset.nj → inck.j → clk.pj → clk.pj → clk.nj → d0.pj → d1.pj → d1.nj → d2.pj → d2.nj → d3.pj → d3.pj → d4.pj → d4.pj	$\begin{array}{c} clk.p.0 \leftrightarrow \\ clk.n.0 \leftrightarrow \\ dl.p.io \leftrightarrow \\ dl.p.io \leftrightarrow \\ dl.p.o \leftrightarrow \\ $	IMX Framer Settings Image Sensor Mode V_TOTAL H_TOTAL V_H_BLANK	 № Master 12'd3120 12'd1285 12'd2 	C Slave 12'dxxx (decimal) 12'dxxx (decimal) 12'dxxx (decimal)
		Configure		Close Help

Figure 4.5. Video Tab in IP User Interface

- 6. To modify D-PHY timing parameters, click the **Protocol Timing Parameters** tab as shown in Figure 4.6.
- 7. Select the required parameters, and click the **Configure** button.
- 8. Click Close.
- 9. Click Generate in the toolbox. Clarity Designer generates all the IPs and modules, and creates a top module to wrap them.

For detailed instructions on how to use the Clarity Designer, refer to the Lattice Diamond software user guide.

Configuration Generate Log	
	Configuration \ Video \ Protocol Timing Parameters \
SubLVDS to CSI-2 \rightarrow reset_n_ick_p_o \rightarrow ck_p_idl_p_io \rightarrow ck_n_idl_p_io \rightarrow clk_n_idl_p_io \rightarrow dl_p_idl_p_o \rightarrow dl_p_it_pl the	TXHS-DATA Parameters LHS-PREPARE 1 (40ns + 4Ul) to (85ns + 6Ul) LHS_ZERO 1 1_HS-PREPARE + 1_HS_ZERO) >= (145ns + 10Ul) I customize HS-DATA parameter values TXDPHY CLOCK Parameters 1 8Ul minimum LCLK-PRE 1 8Ul minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I customize TX CLOCK parameter values Image: 100 minimum I
	Configure Close Help

Figure 4.6. Protocol Timing Parameters Tab in IP User Interface

4.4. Generated IP Directory Structure and Files

The IP and supporting files generated in Clarity Designer and IP Express have similar folder architecture and files. The directory structure of the generated files is shown in Figure 4.7.

Figure 4.7. SubLVDS to MIPI CSI-2 IP Directory Structure

The design flow for the IP created with Clarity Designer and IPexpress uses a post-synthesized module (NGO) for synthesis and uses a protected model for simulation. The post-synthesized module and protected model are customized when you configure the IP and created automatically when the IP is generated.

Table 4.1 provides a list of key files and directories created by Clarity Designer and how they are used. The postsynthesized module (NGO), the protected simulation model, and all other files are also generated based on your configuration and provided as examples to use or evaluate the IP.

File	Description
<instance_name>.v</instance_name>	Verilog top-level module of SubLVDS to MIPI CSI-2 IP used for both synthesis and simulation.
<instance_name>_inst.v/vhd</instance_name>	Template for instantiating the generated soft IP top-level in another user-created top module.
<instance_name>_*.v</instance_name>	Verilog submodules for simulation. Files that do not have equivalent black box modules are also used for synthesis.
<instance_name>_*_beh.v</instance_name>	Protected Verilog models for simulation.
<instance_name>_*_bb.v</instance_name>	Verilog black box modules for synthesis.
<instance_name>_*.ngo</instance_name>	User interface configured and synthesized modules for synthesis.
<instance_name>_params.v</instance_name>	Verilog parameters file which contains required compiler directives to successfully configure IP during synthesis and simulation.
<instance_name>.lpc</instance_name>	Lattice Parameters Configuration file. This file records all the IP configuration options set through Clarity Designer. It is used by IP generation script to generate configuration-specific IP. It is also used to reload parameter settings in the IP user interface in Clarity Designer when it is being reconfigured.

Table 4.1. Files Generated in Clarity Designer

Besides the files listed in the tables, most of the files required to evaluate the SubLVDS to MIPI CSI-2 IP reside under the directory \<*sublvds2csi2_eval>*. This includes the simulation model, testbench and simulation script files for running the simulation in Active HDL.

The *<instance_name>* folder contains files/folders with content specific to the *<instance_name>* configuration. This directory is created by Clarity Designer each time the IP is generated and regenerated with the same file name. A separate *<instance_name>* directory is generated for IPs with different names, such as *<my_IP_0>*, *<my_IP_1>*, and others.

The folder*instance_name>*, the \sublvds2csi2_eval and subtending directories provide files supporting SubLVDS to CSI-2 IP evaluation that includes files*/folders* with content that is constant for all configurations of the SubLVDS to MIPI CSI-2 IP. The *sublvds2csi2_eval* directory is created by Clarity Designer the first time the IP is generated when multiple SubLVDS to MIPI CSI-2 IP are generated in the same root directory and updated each time the IP is regenerated.

The simulation part of the user evaluation provides testbench and test cases supporting RTL simulation for Active-HDL simulators under *<project root*/*testbench*.

Separate directories located at *\<project_dir>\sublvds2csi2_eval\<instance_name>\sim\Aldec\rtl are provided and contain pre-built simulation script files.*

4.5. Running Functional Simulation

The functional simulation includes a configuration-specific behavioral model of the SubLVDS to CSI-2 Image Sensor Interface Bridge, which is instantiated in an FPGA top level along with some other logic (such as PLLs and registers with Read/Write Interface). This FPGA top is instantiated in an evaluation testbench that provides appropriate stimulus for the SubLVDS to CSI-2 Bridge. The testbench files are provided in *cproject_dir*

The generated IP package includes the configuration-specific behavior model (*<instance_name>_beh.v*, provided in *<project_dir>\sublvds2csi2_eval\<instance_name>\src\beh_rtl\<family>*) for functional simulation. Models for simulation are provided in the corresponding \models folder if required.

To run the simulation in Active-HDL (Windows only):

1. Modify the ***.do** file located in

<project_dir><<IPinstance_name><<instance_name>_eval<<IPinstance_name>\sim\aldec\.

a. Specify the working directory (sim_working_folder). For example:

set sim_working_folder C:/my_design.

b. Specify the workspace name that is created in working directory. For example:

set workspace_name design_space.

- c. Specify the design name. For example: set design_name **DesignA**.
- d. Specify the design path where the IP Core generated using Clarity Designer is located. For example: set design_path **C:/my_designs/DesignA**.
- e. Specify the design instance name (same as the instance name specified in Clarity Designer. For example: set design_inst **DesignA_inst**.
- f. Specify the Lattice Diamond primitive path (diamond_dir) to where it is installed. For example: set diamond_dir **C:/lscc/diamond/3.8_x64**.
- 2. Update testbench parameters to customize data size, clock and/or other settings. Table 4.2 for the list of valid testbench compiler directives.
- 3. Under the Tools menu, select Active-HDL.
- 4. In Active-HDL window, click **Tools** -> **Execute macro**.
- 5. Select the ***.do** file.
- 6. Wait for the simulation to finish.

Table 4.2 is a list of testbench directives which can be modified by setting the define in the vlog command in the *.do file.

Example:

```
vlog \
+define+NUM_FRAMES=60 \
+define+NUM_LINES=1080 \
....
```

Table 4.2. Testbench Directives

Directive	Description
NUM_PIXELS	Number of pixels per line
NUM_LINES	Number of lines per frame
NUM_FRAMES	Number of frames to be transmitted
VFRONT_BLNK	Vertical front blanking
VREAR_BLNK	Vertical rear blanking
XHS_ASRT	Number of clock DCK cycles the xhs signal is asserted
XHS_PERIOD	XHS period in terms of DCK cycles
INIT_DRIVE_DELAY	Delay from reset deassertion or tinit_done assertion before model starts driving data
FRAMER	Used to enable sampling of xhs and xvs when design is in slave mode

You can override the default timing parameters using the above information.

4.6. Simulation Strategies

This section describes the simulation environment, which demonstrates basic SubLVDS to CSI-2 Image Sensor Bridge functionality. Figure 4.8 shows the block diagram of simulation environment.

Figure 4.8. Simulation Environment Block Diagram

4.7. Simulation Environment

The simulation environment is made up of a SubLVDS model instance connected to the input of SUBLVDS2CSI2 IP core instance in the testbench. The SubLVDS model is configured based on the SUBLVDS2CSI2 IP configurations and testbench parameters. It can be configured as 4, 6, 8, or 10 Rx lanes. If miscellaneous signals are enabled, the testbench monitors the assertion of tinit done signal before transmitting the sublvds data to the input of the design.

The testbench also provides xhs and xvs signals to the SubLVDS model when the design is configured as master mode. Otherwise, the model uses the xhs and xvs signals from the design as reference for data transmission when configured as slave mode. Refer to the *testbench readme.txt* file for details on how to set the TB parameters.

Figure 4.9 shows an example simulation where miscellaneous signals are disabled.

Figure 4.9. Configuration with MISC_ON Disabled

Since miscellaneous signals are disabled, you should set initial driving delay before testbench starts sending data to the IP core. In this example, the design is also configured as Slave mode. The SubLVDS model waits for XVS signal assertion before starting to transmit data to the IP.

Figure 4.10 shows an example where miscellaneous signals are enabled.

Figure 4.10. Configuration with MISC_ON Enabled

In this example, miscellaneous signals are enabled. The design is also configured as Master mode, xhs and xvs signals are generated by Testbench. The testbench monitors the tinit_done assertion indicating that initialization has completed before sending data t

4.8. Instantiating the IP

The core modules of SubLVDS to CSI-2 IP are synthesized and provided in NGO format with black box Verilog source files for synthesis. A Verilog source file named *<instance_name>_sublvds_2_csi2_ip.v* instantiates the black box of core modules. The top-level file *<instance_name>.v* instantiates *<instance_name>_sublvds_2_csi2_ip.v*.

The IP instances do not need to be instantiated one by one manually. The top-level file and the other Verilog source files are provided in *cproject_dir>*. These files are refreshed each time the IP is regenerated.

For example, if the Clarity Designer project file is *cdprj.sbx*, the automatically generated wrapper file is *cdprj.v* in which all generated IPs are instantiated. You do not need to instantiate the IP instances one by one manually. The *cdprj.v* is refreshed each time the IPs in the design are regenerated.

A Verilog instance template *<instance_name>_inst.v* or VHDL instance template *<instance_name>_inst.vhd* is also provided as a guide if the design is to be included in another top level module.

4.9. Synthesizing and Implementing the IP in a Top-Level Design

In Clarity Designer, the Clarity Designer project file (.sbx) is added to Lattice Diamond as a source file after all IPs are generated. Note that default Diamond strategy (.sty) and default Diamond preference file (.lpf) are used. When using .sbx approach, import the recommended strategy and preferences from

<project_dir>\sublvds2csi2_eval<<instance_name>\impl\lifmd\[lse | synplify] directories.

All required files are invoked automatically. You can directly synthesize, map and place/par the design in the Diamond design environment after the IPsare generated.

To use the project files in Diamond:

- 1. Choose File > Open > Project.
- in the Open Project dialog box browse to \<project_dir>\sublvds2csi2_eval\<instance_name>\impl\lifmd\[Ise|synplify]\.
- 3. Select and open **<instance_name>_top.ldf**. At this point, all of the files needed to support top-level synthesis and implementation are imported to the project.
- 4. Select the Process tab in the left-hand user interface window.
- 5. Implement the complete design via the standard Diamond user interface flow.

4.10. Hardware Evaluation

The SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge IP supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP that operate in hardware for a limited period of time (approximately four hours) without requiring the request of an IP license. It may also be used to evaluate the IP in hardware in user-defined designs.

4.10.1. Enabling Hardware Evaluation in Diamond

Choose **Project** > **Active Strategy** > **Translate Design Settings**. The hardware evaluation capability may be enabled or disabled in the **Strategy** dialog box. It is enabled by default.

4.11. Updating/Regenerating the IP

The Clarity Designer interface allows you to update the local IPs from the Lattice IP server. The updated IP can be used to regenerate the IP instance in the design. To change the parameters of the IP used in the design, the IP must also be regenerated.

4.11.1. Regenerating an IP in Clarity Designer

To regenerate IP in Clarity Designer:

- 1. In the **Builder** or **Planner** tab, right-click the IP instance to be regenerated and select **Config** in the menu as shown in Figure 4.11.
- 2. The IP Configuration user interface is displayed. Change the parameters as required and click the **Configure** button.
- 3. Update the pin connection in **Builder** tab for configuration changes.
- 4. Click Generate in the toolbox. Clarity Designer regenerates all the instances which are reconfigured.

Figure 4.11. IP Regeneration in Clarity Designer

References

For more information about CrossLink devices, refer to the CrossLink Family Data Sheet (FPGA-DS-02007).

For further information on interface standards, refer to:

- MIPI Alliance Specification for D-PHY, version 1.1, November 7, 2011, www.mipi.org
- MIPI Alliance Specification for Camera Serial Interface 2 (CSI-2) version 1.1, July 18, 2012, www.mipi.org

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Appendix A. Resource Utilization

Table A.1 lists resource utilization for Lattice CrossLink FPGAs using the SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge IP. The performance and utilization data target an LIF-MD6000-6MG81I device with -6 speed grade using Lattice Diamond 3.8 and Lattice Synthesis Engine. Performance may vary when using a different software version or targeting a different device density or speed grade within the CrossLink family. The values of f_{MAX} shown are based on continuous byte clock. The Target f_{MAX} column shows target byte clock frequency for each configuration.

IP User-Configurable Parameters (1:8 gearing)	Slices	LUTs	Registers	sysMEM EBRs	Actual f _{MAX} (MHz)	Target f _{MAX} (MHz)
10-lane configuration	2386	3682	1758	12	96.516	93.75
8-lane configuration	1857	2466	1524	10	112.969	90
6-lane configuration	1806	2370	1385	8	116.523	112.5
4-lane configuration	1389	1878	1173	6	114.142	112.5

Table A.1. Resource Utilization*

*Note: f_{MAX} shown is the byte clock frequency. The target f_{MAX} for this design is 93.75 MHz.

Appendix B. What is Not Supported

The subLVDS to MIPI CSI-2 Image Sensor Interface Bridge IP does not support the following features:

- Back-to-back transition from low-power (LP) mode to high-speed (HS) mode and vice versa. There is a wait time needed between any LP and HS transition. Because of this wait time requirement on the MIPI D-PHY Tx side of the bridge, the 1st line of each frame is dropped through the bridge. The wait time (horizontal blanking period) between start of FV (frame valid) and start of LV (line valid), end of LV and end of FV, and end of LV and start of LV can be as long as 200-byte clock cycles or 650 input clock cycles depending on the lane rate.
- ECC error detection and correction
- Checksum error detection

Revision History

Revision 1.4, IP Version 1.2, April 2019

Section	Change Summary
Introduction	Specified that this user guide can be used for IP design version 1.x.
IP Generation and Evaluation	In Licensing the IP, modified the instructions for requesting free license.
Revision History	Updated revision history table to new template.
All	Minor adjustments in style and formatting.

Revision 1.3, IP Version 1.2, February 2017

Section	Change Summary
Introduction	Updated the number of LUTs and Registers in Table 1.1. SubLVDS to MIPI CSI-2 IP Quick Facts in Quick Facts section.
Parameter Settings	Added Tx D-PHY Clock Mode and Bypass tINIT Counter in Table 3.1. SubLVDS to CSI-2 IP Parameters.
IP Generation and Evaluation	Updated figures in Getting Started and Creating IP in Clarity Designer sections.
Appendix A. Resource Utilization	Updated resource utilization values in Table A.1. Resource Utilization.

Revision 1.2, November 2016

Section	Change Summary		
Parameter Settings	Updated Word Count description in Table 3.1. SubLVDS to CSI-2 IP Parameters.		
IP Generation and Evaluation	 Updated Licensing the IP section – Added email address lic_admn@latticesemi.com for requesting free license. Added step 9 in Creating IP in Clarity Designer section. 		
Appendix B. What is Not Supported	Added PLL frequency holes to the list of limitations.		

Revision 1.1, July 2016

Section	Change Summary		
All	Updated document number, the previous document number was IPUG125.		
Introduction	Updated Synplify Pro version in Table 1.1. SubLVDS to MIPI CSI-2 IP Quick Facts, and added simulation in Quick Facts section.		
Parameter Settings	Updated description of Rx Gear in Table 3.1. SubLVDS to CSI-2 IP Parameters.		
IP Generation and Evaluation	• Updated Figure 4.4. Configuration Tab in IP User Interface and Figure 4.5. Video Tab in IP User Interface.		
	Added new Figure 4.6. Protocol Timing Parameters Tab in IP User Interface.		
	Updated Generated IP Directory Structure and Files section.		
	 Added new Running Functional Simulation, Simulation Strategies, Simulation Environment sections. 		

Revision 1.0, IP Version 1.0, May 2016

Section	Change Summary
All	Initial release

www.latticesemi.com