Arduinoの基本的なコード例の1つになると思うので、関数のサンプルコードを自分で作ってみることにしました。確かに、関数を使うためのドキュメントはありますが、コンテキストを使おうとすると、Arduinoのウェブサイトにアクセスしなければなりませんし、そこでもその例をあまり詳しく説明していません。この投稿では、関数を使用しない最初のコード例、関数を使用して同じプログラムを変換、関数でできる拡張例を示し、関数を使用しないコードのバージョンと比較して、 コードの行数が少ないほど、使いやすくなることを示します。 なお、この例では、Arduinoの基本的な例をすでにいくつか知っていることを前提としています。
関数を使用しない最初のコード
/*
* This code is the starting code for my functionExample, I want to turn pins 13, 12, 11 high; wait for half a second; turn all the pins off; wait for half a second;
* and turn pins 13 and 11 on while keeping 12 off and wait for another half second.
*/
void setup() {
pinMode(13, OUTPUT);
pinMode(12, OUTPUT);
pinMode(11, OUTPUT);
}
boolean writePin = HIGH; //set a global variable to make it easier to turn things on and off in the function, use !writePin for LOW
void loop() {
//first, let's see how cumbersome writing code can be when trying to run several LEDs
//write all output pins high:
digitalWrite(13, writePin);
digitalWrite(12, writePin);
digitalWrite(11, writePin);
delay(500); //delay half a second
//write all pins low
digitalWrite(13, !writePin);
digitalWrite(12, !writePin);
digitalWrite(11, !writePin);
delay(500); //delay half a second
//write 13 and 11 high, keep 12 low
digitalWrite(13, writePin);
digitalWrite(12, !writePin);
digitalWrite(11, writePin);
delay(500);//delay half a second
//doing that sequence alone takes 12 lines of code to accomplish something that could probably be done in less
}
// 20 lines of code not including comments
私は通常、{}を含むコード行を重要視しますが、コメントはコンパイラで無視されるため、コメントは重要視しません。このコードは煩雑で、繰り返される行が多く、別のアクションが必要な場合はいくつかの行を変更しなければなりません。この方法は、トラブルシューティングや複雑なプログラムを作るときに、あまり効率的ではありません。
関数を使用して作り替えた最初のコード
/* The Arduino home page does try to explain funcitons using a math example and reading an analog pin, which is cool, but there are more things one can do with functions. The anatomy of a function in Arduino is as follows:
dataType variableName(dataType parameterVariable1, dataType parameterVariable2, …){}
All functions have to have a valid Arduino dataType at the beginning of the line of code because we use a variable to reference the entire code that will be run between the {}
If you want numbers or some sort of result with measurable values, you will have to use a data type that can store those values; examples are
int, double, unsigned long, long, boolean, float (and all the other types that can store data)
The only thing to mention is that functions with these dataTypes must have a return statement; Example:int addTwoNumb(int one, int two){
int result = one + two;
return result;
}
The function above returns the calculation of one and two and can be stored in a new variable when called/used in the main loop.
The values inside the () are called parameters, functions don’t always require parameters (most do though), so the () can be empty.
Parameters are placeholder variables with any data type valid in Arduino. These variables do not have to be assigned values until the function is used/called in the main loop, values are passed as soon as they are called. Any number of new variables can be added into a function and any amount of code can be added to a function, even functions can call other functions! (gets a little confusing at that point)
/
void setup() {
pinMode(13, OUTPUT);
pinMode(12, OUTPUT);
pinMode(11, OUTPUT);
}
boolean writePin = HIGH; //set a global variable to make it easier to turn things on and off in the function, use !writePin for LOW
void loop() {
sequenceLights(13, 12, 11, writePin, writePin, writePin, 500); //call/use sequence lights on pins 13, 12, 11; use the default value for writePin (HIGH), delay for half a second (500 mS)
sequenceLights(13, 12, 11, !writePin, !writePin, !writePin, 500);
sequenceLights(13, 12, 11, writePin, !writePin, writePin, 500);
}
/ Functions are typically defined or written below the loop statement for clarity*/
//notice that the function below uses the exact same code but uses different variables and that we don’t use a datatype (void), we aren’t calculating anything, so there doesn’t need to be a datatype
//the function takes 3 integers to begin with: pin13, pin12, pin11; these represent the values for the pins we want to control
//then the next three values are writeFunc1, writeFunc2, writeFunc3 which are boolean values used to control the pins (HIGH or LOW), we want to be able to use unique instructions per light as that is how the original sequence worked
//finaly delayPeriod is used in place of 500, because what if we want to change the timing, why not?
void sequenceLights(int pin13, int pin12, int pin11, boolean writeFunc1, boolean writeFunc2, boolean writeFunc3, int delayPeriod){
digitalWrite(pin13, writeFunc1);
digitalWrite(pin12, writeFunc2);
digitalWrite(pin11, writeFunc3);
delay(delayPeriod);
}
//17 lines of code not including comments
コード全体が3行しか削減されていないとしても、これにより、遅延の値やピンがHIGHまたはLOWになるかどうかを実験したい場合に、値をすばやく調整することが容易になります。もし関数がなければ、毎回4行のコードを使って手動で追加しなければなりません。
初期コード配線図
関数を使用した拡張コード
void setup() {
//Serial.begin(9600); //I often use the serial monitor to debug my program or to do some testing, I then comment the line of code to increase some runtime speed (counted this line of commented code as it was essential to my process)
pinMode(13, OUTPUT);
pinMode(12, OUTPUT);
pinMode(11, OUTPUT);
pinMode(10, OUTPUT);
pinMode(9, OUTPUT);
pinMode(8, OUTPUT);
}
int countRndSeq = 0; //set initial variable for counting variable for the random sequence to "reset"
int randPin = random(8, 14); //set the random Pin variable to a random number between 8 and 13 (14 for including 13 as a choice); we only need 8-13 as those are the pins I use
void loop() {
randSequenceLightSlow(5, 125, 1200); //run function for a random sequence, set counting interval at 5, set minimum delay at 125, set the max delay to 1200 (1.2 seconds) (I decided to move the randMode into the function because it was easier to accomplish)
countRndSeq = 0; //reset the counter for the next sequence
delay(3000); //wait three seconds then turn off all the lights (made a function for that)
allPinsWrite(13, 12, 11, 10, 9, 8 , LOW);
randSequenceLightSlow(7, 125, 1450); //run function for random sequence using counting interval at 7, minimum delay at 125, set max delay to 1450 (1.450 seconds)
countRndSeq = 0; //reset counter for next sequence
delay(3000); //wait three seconds and turn off all the lights
allPinsWrite(13, 12, 11, 10, 9, 8, LOW);
}
/*
* The following uses a while loop for control, it does random lights and slows down delay by a set interval between steps (larger interval will make it count and slow down much quicker)
* As long as that counting number (countRndSeq) is less than the max delay (maxDel), it will do the following in order:
* 1. chose a random pin 8-13 and set it equal to a variable
* 2. Pick the random Mode value each time the while loop runs again (increases chance to get modes 0-2)
* 2. turn off the pin associated to that number using the delay amount of the same number that countrRndSeq is currently at
* 3. Increase countRndSeq by the interval amount set by calling the function (can be any integer)
* 4. Check if the current count is greater than the minimum delay and then check which mode (remember I set it to random above); there are 3 modes 0, 1, 2
* NOTE: For #4, 0 has a high chance of adding less to countRndSeq, 1 has a medium chance of adding a bit more to countRndSeq, 2 has a low chance of adding quite a bit to countRndSeq
* 5. Set the final pin after the sequence has finished to high to simulate that is the final pin the program landed on
* See calcThreshChance for an explanation of how I made weighted random events for the chance for the lights to slow faster
*/
void randSequenceLightSlow(int interval, int minDel, int maxDel){
while(countRndSeq < maxDel){
randPin = random(8, 14);
int mode = random(0, 3);
digitalWrite(randPin, HIGH);
delay(countRndSeq);
digitalWrite(randPin, LOW);
delay(countRndSeq);
countRndSeq += interval;
if(countRndSeq > minDel && mode == 0){
countRndSeq += calcThreshChance(mode, interval);
} else if(countRndSeq > minDel && mode == 1){
countRndSeq += calcThreshChance(mode, interval);
} else if(countRndSeq > minDel && mode == 2){
countRndSeq += calcThreshChance(mode, interval);
}
}
digitalWrite(randPin, HIGH);
}
/*
* Simple function that uses integers 8-13 and a boolean value to turn on or off all the LEDs at once
*/
void allPinsWrite(int p1, int p2, int p3, int p4, int p5, int p6, boolean writeInst){
digitalWrite(p1, writeInst);
digitalWrite(p2, writeInst);
digitalWrite(p3, writeInst);
digitalWrite(p4, writeInst);
digitalWrite(p5, writeInst);
digitalWrite(p6, writeInst);
}
/*
* The following function takes an integer 0-2 and calculates the chance for it to add more to the number countRndSeq
* First it sets up three variables local to the function (chance for around 50, a chance for around 200, and a chance for around 300)
* Then the following first check is made: check which mode is selected, 0, 1, or 2 (if someone entered something else or not calculated it will return 0 and count by the regular interval in the randomSequence)
* If it is mode 0, use a relatively short random range from 45 to 69 and check if that random number falls between 50 and 60 which is a pretty high chance based on the short range, so it will more than likely add 1000 plus that random number to countRndSeq
* If it is mode 1, use a larger range from 200 to 299 and check if that random number lies between 250 and 255, which is a medium chance, so it may or may not use that random number + 2000
* If it is mode 2, use a much larger range from 300 to 599 and check if that random number lies between 320 and 324, which is a low chance, so it has less likelihood of using that random number and adding 3000
* All other cases it will just add the regular interval
*/
int calcThreshChance(int mode, int interval){
int randCh50 = 0;
int randCh200 = 0;
int randCh300 = 0;
if(mode == 0){
randCh50 = random(45, 70);
if(randCh50 >= 50 && randCh50 <= 60){
return randCh50 + 1000;
} else {
return interval;
}
} else if (mode == 1){
randCh200 = random(200, 300);
if(randCh200 >= 250 && randCh200 <= 255){
return randCh200 + 2000;
} else {
return interval;
}
} else if (mode == 2){
randCh300 = random(300, 600);
if(randCh300 >= 320 && randCh300 <= 324){
return randCh300 + 3000;
} else {
return interval;
}
} else {
return interval;
}
}
//77 lines of code not including comments
このコードのアイデアは、6面体のサイコロの回転をシミュレートしたもので、最初は速く、だんだんと遅くなって最後に光を放ちます。このコードでは、(生成に含まれる)開始番号と(生成に含まれない)終了番号を使用する内蔵のランダム関数を使用しています。ピン(8~13)をランダムにするだけでなく、一部のサイコロの回転のように大きく減速する可能性もランダムにしています。私はこれを3つのチャンスの「モード」で実現しました。確率が高いと、カウント変数への追加が少なくなり、確率が中だと、カウント変数への追加が少し多くなり、確率が低いと、カウント変数への追加が多くなります(詳細はコードのコメントを参照)。このアイデアを理解しやすく、実験しやすくするために作ったカスタム関数が3つあります。
カスタム関数が無い場合の拡張コード
void setup() {
pinMode(13, OUTPUT);
pinMode(12, OUTPUT);
pinMode(11, OUTPUT);
pinMode(10, OUTPUT);
pinMode(9, OUTPUT);
pinMode(8, OUTPUT);
}
int countRndSeq = 0;
int randPin = random(8,14);
int minDel1 = 125;
int maxDel1 = 1200;
int interval1 = 5;
int minDel2 = 125;
int maxDel2 = 1450;
int interval2 = 7;
int randCh50 = 0;
int randCh200 = 0;
int randCh300 = 0;
void loop() {
while(countRndSeq < maxDel1){
randPin = random(8, 14);
int randMode = random(0, 3);
digitalWrite(randPin, HIGH);
delay(countRndSeq);
digitalWrite(randPin, LOW);
delay(countRndSeq);
countRndSeq += interval1;
if(countRndSeq > minDel1 && randMode == 0){
randCh50 = random(45, 70);
if(randCh50 >= 50 && randCh50 <= 60){
countRndSeq += randCh50 + 1000;
} else {
countRndSeq += interval1;
}
} else if(countRndSeq > minDel1 && randMode == 1){
randCh200 = random(200, 300);
if(randCh200 >= 250 && randCh200 <= 255){
countRndSeq += randCh200 + 2000;
} else {
countRndSeq += interval1;
}
} else if(countRndSeq > minDel1 && randMode == 2){
randCh200 = random(300, 600);
if(randCh200 >= 320 && randCh200 <= 324){
countRndSeq += randCh200 + 3000;
} else {
countRndSeq += interval1;
}
} else {
countRndSeq += interval1;
}
}
digitalWrite(randPin, HIGH);
countRndSeq = 0;
delay(3000);
digitalWrite(13, LOW);
digitalWrite(12, LOW);
digitalWrite(11, LOW);
digitalWrite(10, LOW);
digitalWrite(9, LOW);
digitalWrite(8, LOW);
while(countRndSeq < maxDel2){
randPin = random(8, 14);
int randMode = random(0, 3);
digitalWrite(randPin, HIGH);
delay(countRndSeq);
digitalWrite(randPin, LOW);
delay(countRndSeq);
countRndSeq += interval2;
if(countRndSeq > minDel2 && randMode == 0){
randCh50 = random(45, 70);
if(randCh50 >= 50 && randCh50 <= 60){
countRndSeq += randCh50 + 1000;
} else {
countRndSeq += interval2;
}
} else if(countRndSeq > minDel2 && randMode == 1){
randCh200 = random(200, 300);
if(randCh200 >= 250 && randCh200 <= 255){
countRndSeq += randCh200 + 2000;
} else {
countRndSeq += interval2;
}
} else if(countRndSeq > minDel2 && randMode == 2){
randCh200 = random(300, 600);
if(randCh200 >= 320 && randCh200 <= 324){
countRndSeq += randCh200 + 3000;
} else {
countRndSeq += interval2;
}
} else {
countRndSeq += interval2;
}
}
digitalWrite(randPin, HIGH);
countRndSeq = 0;
delay(3000);
digitalWrite(13, LOW);
digitalWrite(12, LOW);
digitalWrite(11, LOW);
digitalWrite(10, LOW);
digitalWrite(9, LOW);
digitalWrite(8, LOW);
}
//105 lines of code not including comments
同じことをするのに、かなりの行数になっていることに注目してください(関数バージョンでは28行減っていますが、これは大きなプログラムを作るときには重要なことです)。行数が少なくなっただけでなく、関数を使うことによって、さまざまな値を試すのが格段に楽になりました。手作業でコーディングする場合では、実験のためにライン上でいくつかの変数を変更する必要があります。より多くの実験を行うために、必要なアクションごとにコードを変更したい場合を想像してみてください:関数を使えば、1つのコードブロックを編集することで、機能をより早く試すことができます。
拡張コード配線図
部品表
使用したすべての部品のリンクはこちらですが、732-5011-NDが日本サイトでの取り扱いがないため、記載されていません。
https://www.digikey.jp/short/tv4w0qd3