Thanks for getting back to me so quickly Rachel!
The following is the code I’ve been running to test functionality. It returns no errors and, while it reacts to button presses, doesn’t display text on the LCD.
#!/usr/bin/python
# Python library for Adafruit RGB-backlit LCD plate for Raspberry Pi.
# Written by Adafruit Industries. MIT license.
from Adafruit_I2C import Adafruit_I2C
from time import sleep
class Adafruit_CharLCDPlate(Adafruit_I2C):
# ----------------------------------------------------------------------
# Constants
# Port expander registers
MCP23017_IOCON_BANK0 = 0x0A # IOCON when Bank 0 active
MCP23017_IOCON_BANK1 = 0x15 # IOCON when Bank 1 active
# These are register addresses when in Bank 1 only:
MCP23017_GPIOA = 0x09
MCP23017_IODIRB = 0x10
MCP23017_GPIOB = 0x19
# Port expander input pin definitions
SELECT = 0
RIGHT = 1
DOWN = 2
UP = 3
LEFT = 4
# LED colors
OFF = 0x00
RED = 0x01
GREEN = 0x02
BLUE = 0x04
YELLOW = RED + GREEN
TEAL = GREEN + BLUE
VIOLET = RED + BLUE
WHITE = RED + GREEN + BLUE
ON = RED + GREEN + BLUE
# LCD Commands
LCD_CLEARDISPLAY = 0x01
LCD_RETURNHOME = 0x02
LCD_ENTRYMODESET = 0x04
LCD_DISPLAYCONTROL = 0x08
LCD_CURSORSHIFT = 0x10
LCD_FUNCTIONSET = 0x20
LCD_SETCGRAMADDR = 0x40
LCD_SETDDRAMADDR = 0x80
# Flags for display on/off control
LCD_DISPLAYON = 0x04
LCD_DISPLAYOFF = 0x00
LCD_CURSORON = 0x02
LCD_CURSOROFF = 0x00
LCD_BLINKON = 0x01
LCD_BLINKOFF = 0x00
# Flags for display entry mode
LCD_ENTRYRIGHT = 0x00
LCD_ENTRYLEFT = 0x02
LCD_ENTRYSHIFTINCREMENT = 0x01
LCD_ENTRYSHIFTDECREMENT = 0x00
# Flags for display/cursor shift
LCD_DISPLAYMOVE = 0x08
LCD_CURSORMOVE = 0x00
LCD_MOVERIGHT = 0x04
LCD_MOVELEFT = 0x00
# Line addresses for up to 4 line displays. Maps line number to DDRAM address for line.
LINE_ADDRESSES = { 1: 0xC0, 2: 0x94, 3: 0xD4 }
# Truncation constants for message function truncate parameter.
NO_TRUNCATE = 0
TRUNCATE = 1
TRUNCATE_ELLIPSIS = 2
# ----------------------------------------------------------------------
# Constructor
def __init__(self, busnum=-1, addr=0x20, debug=False, backlight=ON):
self.i2c = Adafruit_I2C(addr, busnum, debug)
# I2C is relatively slow. MCP output port states are cached
# so we don't need to constantly poll-and-change bit states.
self.porta, self.portb, self.ddrb = 0, 0, 0b00000010
# Set initial backlight color.
c = ~backlight
self.porta = (self.porta & 0b00111111) | ((c & 0b011) << 6)
self.portb = (self.portb & 0b11111110) | ((c & 0b100) >> 2)
# Set MCP23017 IOCON register to Bank 0 with sequential operation.
# If chip is already set for Bank 0, this will just write to OLATB,
# which won't seriously bother anything on the plate right now
# (blue backlight LED will come on, but that's done in the next
# step anyway).
self.i2c.bus.write_byte_data(
self.i2c.address, self.MCP23017_IOCON_BANK1, 0)
# Brute force reload ALL registers to known state. This also
# sets up all the input pins, pull-ups, etc. for the Pi Plate.
self.i2c.bus.write_i2c_block_data(
self.i2c.address, 0,
[ 0b00111111, # IODIRA R+G LEDs=outputs, buttons=inputs
self.ddrb , # IODIRB LCD D7=input, Blue LED=output
0b00111111, # IPOLA Invert polarity on button inputs
0b00000000, # IPOLB
0b00000000, # GPINTENA Disable interrupt-on-change
0b00000000, # GPINTENB
0b00000000, # DEFVALA
0b00000000, # DEFVALB
0b00000000, # INTCONA
0b00000000, # INTCONB
0b00000000, # IOCON
0b00000000, # IOCON
0b00111111, # GPPUA Enable pull-ups on buttons
0b00000000, # GPPUB
0b00000000, # INTFA
0b00000000, # INTFB
0b00000000, # INTCAPA
0b00000000, # INTCAPB
self.porta, # GPIOA
self.portb, # GPIOB
self.porta, # OLATA
self.portb ]) # OLATB
# Switch to Bank 1 and disable sequential operation.
# From this point forward, the register addresses do NOT match
# the list immediately above. Instead, use the constants defined
# at the start of the class. Also, the address register will no
# longer increment automatically after this -- multi-byte
# operations must be broken down into single-byte calls.
self.i2c.bus.write_byte_data(
self.i2c.address, self.MCP23017_IOCON_BANK0, 0b10100000)
self.displayshift = (self.LCD_CURSORMOVE |
self.LCD_MOVERIGHT)
self.displaymode = (self.LCD_ENTRYLEFT |
self.LCD_ENTRYSHIFTDECREMENT)
self.displaycontrol = (self.LCD_DISPLAYON |
self.LCD_CURSOROFF |
self.LCD_BLINKOFF)
self.write(0x33) # Init
self.write(0x32) # Init
self.write(0x28) # 2 line 5x8 matrix
self.write(self.LCD_CLEARDISPLAY)
self.write(self.LCD_CURSORSHIFT | self.displayshift)
self.write(self.LCD_ENTRYMODESET | self.displaymode)
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
self.write(self.LCD_RETURNHOME)
# ----------------------------------------------------------------------
# Write operations
# The LCD data pins (D4-D7) connect to MCP pins 12-9 (PORTB4-1), in
# that order. Because this sequence is 'reversed,' a direct shift
# won't work. This table remaps 4-bit data values to MCP PORTB
# outputs, incorporating both the reverse and shift.
flip = ( 0b00000000, 0b00010000, 0b00001000, 0b00011000,
0b00000100, 0b00010100, 0b00001100, 0b00011100,
0b00000010, 0b00010010, 0b00001010, 0b00011010,
0b00000110, 0b00010110, 0b00001110, 0b00011110 )
# Low-level 4-bit interface for LCD output. This doesn't actually
# write data, just returns a byte array of the PORTB state over time.
# Can concatenate the output of multiple calls (up to 8) for more
# efficient batch write.
def out4(self, bitmask, value):
hi = bitmask | self.flip[value >> 4]
lo = bitmask | self.flip[value & 0x0F]
return [hi | 0b00100000, hi, lo | 0b00100000, lo]
# The speed of LCD accesses is inherently limited by I2C through the
# port expander. A 'well behaved program' is expected to poll the
# LCD to know that a prior instruction completed. But the timing of
# most instructions is a known uniform 37 mS. The enable strobe
# can't even be twiddled that fast through I2C, so it's a safe bet
# with these instructions to not waste time polling (which requires
# several I2C transfers for reconfiguring the port direction).
# The D7 pin is set as input when a potentially time-consuming
# instruction has been issued (e.g. screen clear), as well as on
# startup, and polling will then occur before more commands or data
# are issued.
pollables = ( LCD_CLEARDISPLAY, LCD_RETURNHOME )
# Write byte, list or string value to LCD
def write(self, value, char_mode=False):
""" Send command/data to LCD """
# If pin D7 is in input state, poll LCD busy flag until clear.
if self.ddrb & 0b00000010:
lo = (self.portb & 0b00000001) | 0b01000000
hi = lo | 0b00100000 # E=1 (strobe)
self.i2c.bus.write_byte_data(
self.i2c.address, self.MCP23017_GPIOB, lo)
while True:
# Strobe high (enable)
self.i2c.bus.write_byte(self.i2c.address, hi)
# First nybble contains busy state
bits = self.i2c.bus.read_byte(self.i2c.address)
# Strobe low, high, low. Second nybble (A3) is ignored.
self.i2c.bus.write_i2c_block_data(
self.i2c.address, self.MCP23017_GPIOB, [lo, hi, lo])
if (bits & 0b00000010) == 0: break # D7=0, not busy
self.portb = lo
# Polling complete, change D7 pin to output
self.ddrb &= 0b11111101
self.i2c.bus.write_byte_data(self.i2c.address,
self.MCP23017_IODIRB, self.ddrb)
bitmask = self.portb & 0b00000001 # Mask out PORTB LCD control bits
if char_mode: bitmask |= 0b10000000 # Set data bit if not a command
# If string or list, iterate through multiple write ops
if isinstance(value, str):
last = len(value) - 1 # Last character in string
data = [] # Start with blank list
for i, v in enumerate(value): # For each character...
# Append 4 bytes to list representing PORTB over time.
# First the high 4 data bits with strobe (enable) set
# and unset, then same with low 4 data bits (strobe 1/0).
data.extend(self.out4(bitmask, ord(v)))
# I2C block data write is limited to 32 bytes max.
# If limit reached, write data so far and clear.
# Also do this on last byte if not otherwise handled.
if (len(data) >= 32) or (i == last):
self.i2c.bus.write_i2c_block_data(
self.i2c.address, self.MCP23017_GPIOB, data)
self.portb = data[-1] # Save state of last byte out
data = [] # Clear list for next iteration
elif isinstance(value, list):
# Same as above, but for list instead of string
last = len(value) - 1
data = []
for i, v in enumerate(value):
data.extend(self.out4(bitmask, v))
if (len(data) >= 32) or (i == last):
self.i2c.bus.write_i2c_block_data(
self.i2c.address, self.MCP23017_GPIOB, data)
self.portb = data[-1]
data = []
else:
# Single byte
data = self.out4(bitmask, value)
self.i2c.bus.write_i2c_block_data(
self.i2c.address, self.MCP23017_GPIOB, data)
self.portb = data[-1]
# If a poll-worthy instruction was issued, reconfigure D7
# pin as input to indicate need for polling on next call.
if (not char_mode) and (value in self.pollables):
self.ddrb |= 0b00000010
self.i2c.bus.write_byte_data(self.i2c.address,
self.MCP23017_IODIRB, self.ddrb)
# ----------------------------------------------------------------------
# Utility methods
def begin(self, cols, lines):
self.currline = 0
self.numlines = lines
self.numcols = cols
self.clear()
# Puts the MCP23017 back in Bank 0 + sequential write mode so
# that other code using the 'classic' library can still work.
# Any code using this newer version of the library should
# consider adding an atexit() handler that calls this.
def stop(self):
self.porta = 0b11000000 # Turn off LEDs on the way out
self.portb = 0b00000001
sleep(0.0015)
self.i2c.bus.write_byte_data(
self.i2c.address, self.MCP23017_IOCON_BANK1, 0)
self.i2c.bus.write_i2c_block_data(
self.i2c.address, 0,
[ 0b00111111, # IODIRA
self.ddrb , # IODIRB
0b00000000, # IPOLA
0b00000000, # IPOLB
0b00000000, # GPINTENA
0b00000000, # GPINTENB
0b00000000, # DEFVALA
0b00000000, # DEFVALB
0b00000000, # INTCONA
0b00000000, # INTCONB
0b00000000, # IOCON
0b00000000, # IOCON
0b00111111, # GPPUA
0b00000000, # GPPUB
0b00000000, # INTFA
0b00000000, # INTFB
0b00000000, # INTCAPA
0b00000000, # INTCAPB
self.porta, # GPIOA
self.portb, # GPIOB
self.porta, # OLATA
self.portb ]) # OLATB
def clear(self):
self.write(self.LCD_CLEARDISPLAY)
def home(self):
self.write(self.LCD_RETURNHOME)
row_offsets = ( 0x00, 0x40, 0x14, 0x54 )
def setCursor(self, col, row):
if row > self.numlines: row = self.numlines - 1
elif row < 0: row = 0
self.write(self.LCD_SETDDRAMADDR | (col + self.row_offsets[row]))
def display(self):
""" Turn the display on (quickly) """
self.displaycontrol |= self.LCD_DISPLAYON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def noDisplay(self):
""" Turn the display off (quickly) """
self.displaycontrol &= ~self.LCD_DISPLAYON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def cursor(self):
""" Underline cursor on """
self.displaycontrol |= self.LCD_CURSORON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def noCursor(self):
""" Underline cursor off """
self.displaycontrol &= ~self.LCD_CURSORON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def ToggleCursor(self):
""" Toggles the underline cursor On/Off """
self.displaycontrol ^= self.LCD_CURSORON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def blink(self):
""" Turn on the blinking cursor """
self.displaycontrol |= self.LCD_BLINKON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def noBlink(self):
""" Turn off the blinking cursor """
self.displaycontrol &= ~self.LCD_BLINKON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def ToggleBlink(self):
""" Toggles the blinking cursor """
self.displaycontrol ^= self.LCD_BLINKON
self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
def scrollDisplayLeft(self):
""" These commands scroll the display without changing the RAM """
self.displayshift = self.LCD_DISPLAYMOVE | self.LCD_MOVELEFT
self.write(self.LCD_CURSORSHIFT | self.displayshift)
def scrollDisplayRight(self):
""" These commands scroll the display without changing the RAM """
self.displayshift = self.LCD_DISPLAYMOVE | self.LCD_MOVERIGHT
self.write(self.LCD_CURSORSHIFT | self.displayshift)
def leftToRight(self):
""" This is for text that flows left to right """
self.displaymode |= self.LCD_ENTRYLEFT
self.write(self.LCD_ENTRYMODESET | self.displaymode)
def rightToLeft(self):
""" This is for text that flows right to left """
self.displaymode &= ~self.LCD_ENTRYLEFT
self.write(self.LCD_ENTRYMODESET | self.displaymode)
def autoscroll(self):
""" This will 'right justify' text from the cursor """
self.displaymode |= self.LCD_ENTRYSHIFTINCREMENT
self.write(self.LCD_ENTRYMODESET | self.displaymode)
def noAutoscroll(self):
""" This will 'left justify' text from the cursor """
self.displaymode &= ~self.LCD_ENTRYSHIFTINCREMENT
self.write(self.LCD_ENTRYMODESET | self.displaymode)
def createChar(self, location, bitmap):
self.write(self.LCD_SETCGRAMADDR | ((location & 7) << 3))
self.write(bitmap, True)
self.write(self.LCD_SETDDRAMADDR)
def message(self, text, truncate=NO_TRUNCATE):
""" Send string to LCD. Newline wraps to second line"""
lines = str(text).split('\n') # Split at newline(s)
for i, line in enumerate(lines): # For each substring...
address = self.LINE_ADDRESSES.get(i, None)
if address is not None: # If newline(s),
self.write(address) # set DDRAM address to line
# Handle appropriate truncation if requested.
linelen = len(line)
if truncate == self.TRUNCATE and linelen > self.numcols:
# Hard truncation of line.
self.write(line[0:self.numcols], True)
elif truncate == self.TRUNCATE_ELLIPSIS and linelen > self.numcols:
# Nicer truncation with ellipses.
self.write(line[0:self.numcols-3] + '...', True)
else:
self.write(line, True)
def backlight(self, color):
c = ~color
self.porta = (self.porta & 0b00111111) | ((c & 0b011) << 6)
self.portb = (self.portb & 0b11111110) | ((c & 0b100) >> 2)
# Has to be done as two writes because sequential operation is off.
self.i2c.bus.write_byte_data(
self.i2c.address, self.MCP23017_GPIOA, self.porta)
self.i2c.bus.write_byte_data(
self.i2c.address, self.MCP23017_GPIOB, self.portb)
# Read state of single button
def buttonPressed(self, b):
return (self.i2c.readU8(self.MCP23017_GPIOA) >> b) & 1
# Read and return bitmask of combined button state
def buttons(self):
return self.i2c.readU8(self.MCP23017_GPIOA) & 0b11111
# ----------------------------------------------------------------------
# Test code
if __name__ == '__main__':
lcd = Adafruit_CharLCDPlate()
lcd.begin(16, 2)
lcd.clear()
lcd.message("Adafruit RGB LCD\nPlate w/Keypad!")
sleep(1)
col = (('Red' , lcd.RED) , ('Yellow', lcd.YELLOW), ('Green' , lcd.GREEN),
('Teal', lcd.TEAL), ('Blue' , lcd.BLUE) , ('Violet', lcd.VIOLET),
('Off' , lcd.OFF) , ('On' , lcd.ON))
print "Cycle thru backlight colors"
for c in col:
print c[0]
lcd.clear()
lcd.message(c[0])
lcd.backlight(c[1])
sleep(0.5)
btn = ((lcd.SELECT, 'Select', lcd.ON),
(lcd.LEFT , 'Left' , lcd.RED),
(lcd.UP , 'Up' , lcd.BLUE),
(lcd.DOWN , 'Down' , lcd.GREEN),
(lcd.RIGHT , 'Right' , lcd.VIOLET))
print "Try buttons on plate"
lcd.clear()
lcd.message("Try buttons")
prev = -1
while True:
for b in btn:
if lcd.buttonPressed(b[0]):
if b is not prev:
print b[1]
lcd.clear()
lcd.message(b[1])
lcd.backlight(b[2])
prev = b
break