Semi-Inoperable I2C RPi LCD Plate

I recently bought an Adafruit I2C LCD Pi Plate (monochrome) and, after fumbling the wiring and tripping over my own feet for a while was finally able to be recognized by my Pi 1 Model B. I’m now able to activate and deactivate the backlight and log button presses, but have had no luck getting any text to display. I’ve run the test code, updated my packages, and futzed with the contrast potentiometer more times than I can count, and haven’t had any luck whatsoever.
If anyone could make any suggestions they would be greatly appreciated.

Best

Hello, I have a few trouble shooting questions:
Are you receiving any type of error codes after you upload the code into your Pi?
Does it display anything in the text box on start up?
Which example codes are you using?

Thanks for getting back to me so quickly Rachel!
The following is the code I’ve been running to test functionality. It returns no errors and, while it reacts to button presses, doesn’t display text on the LCD.

#!/usr/bin/python

# Python library for Adafruit RGB-backlit LCD plate for Raspberry Pi.
# Written by Adafruit Industries.  MIT license.

from Adafruit_I2C import Adafruit_I2C
from time import sleep


class Adafruit_CharLCDPlate(Adafruit_I2C):

    # ----------------------------------------------------------------------
    # Constants

    # Port expander registers
    MCP23017_IOCON_BANK0    = 0x0A  # IOCON when Bank 0 active
    MCP23017_IOCON_BANK1    = 0x15  # IOCON when Bank 1 active
    # These are register addresses when in Bank 1 only:
    MCP23017_GPIOA          = 0x09
    MCP23017_IODIRB         = 0x10
    MCP23017_GPIOB          = 0x19

    # Port expander input pin definitions
    SELECT                  = 0
    RIGHT                   = 1
    DOWN                    = 2
    UP                      = 3
    LEFT                    = 4

    # LED colors
    OFF                     = 0x00
    RED                     = 0x01
    GREEN                   = 0x02
    BLUE                    = 0x04
    YELLOW                  = RED + GREEN
    TEAL                    = GREEN + BLUE
    VIOLET                  = RED + BLUE
    WHITE                   = RED + GREEN + BLUE
    ON                      = RED + GREEN + BLUE

    # LCD Commands
    LCD_CLEARDISPLAY        = 0x01
    LCD_RETURNHOME          = 0x02
    LCD_ENTRYMODESET        = 0x04
    LCD_DISPLAYCONTROL      = 0x08
    LCD_CURSORSHIFT         = 0x10
    LCD_FUNCTIONSET         = 0x20
    LCD_SETCGRAMADDR        = 0x40
    LCD_SETDDRAMADDR        = 0x80

    # Flags for display on/off control
    LCD_DISPLAYON           = 0x04
    LCD_DISPLAYOFF          = 0x00
    LCD_CURSORON            = 0x02
    LCD_CURSOROFF           = 0x00
    LCD_BLINKON             = 0x01
    LCD_BLINKOFF            = 0x00

    # Flags for display entry mode
    LCD_ENTRYRIGHT          = 0x00
    LCD_ENTRYLEFT           = 0x02
    LCD_ENTRYSHIFTINCREMENT = 0x01
    LCD_ENTRYSHIFTDECREMENT = 0x00

    # Flags for display/cursor shift
    LCD_DISPLAYMOVE = 0x08
    LCD_CURSORMOVE  = 0x00
    LCD_MOVERIGHT   = 0x04
    LCD_MOVELEFT    = 0x00

    # Line addresses for up to 4 line displays.  Maps line number to DDRAM address for line.
    LINE_ADDRESSES = { 1: 0xC0, 2: 0x94, 3: 0xD4 }

    # Truncation constants for message function truncate parameter.
    NO_TRUNCATE       = 0
    TRUNCATE          = 1
    TRUNCATE_ELLIPSIS = 2

    # ----------------------------------------------------------------------
    # Constructor

    def __init__(self, busnum=-1, addr=0x20, debug=False, backlight=ON):

        self.i2c = Adafruit_I2C(addr, busnum, debug)

        # I2C is relatively slow.  MCP output port states are cached
        # so we don't need to constantly poll-and-change bit states.
        self.porta, self.portb, self.ddrb = 0, 0, 0b00000010

        # Set initial backlight color.
        c          = ~backlight
        self.porta = (self.porta & 0b00111111) | ((c & 0b011) << 6)
        self.portb = (self.portb & 0b11111110) | ((c & 0b100) >> 2)

        # Set MCP23017 IOCON register to Bank 0 with sequential operation.
        # If chip is already set for Bank 0, this will just write to OLATB,
        # which won't seriously bother anything on the plate right now
        # (blue backlight LED will come on, but that's done in the next
        # step anyway).
        self.i2c.bus.write_byte_data(
          self.i2c.address, self.MCP23017_IOCON_BANK1, 0)

        # Brute force reload ALL registers to known state.  This also
        # sets up all the input pins, pull-ups, etc. for the Pi Plate.
        self.i2c.bus.write_i2c_block_data(
          self.i2c.address, 0, 
          [ 0b00111111,   # IODIRA    R+G LEDs=outputs, buttons=inputs
            self.ddrb ,   # IODIRB    LCD D7=input, Blue LED=output
            0b00111111,   # IPOLA     Invert polarity on button inputs
            0b00000000,   # IPOLB
            0b00000000,   # GPINTENA  Disable interrupt-on-change
            0b00000000,   # GPINTENB
            0b00000000,   # DEFVALA
            0b00000000,   # DEFVALB
            0b00000000,   # INTCONA
            0b00000000,   # INTCONB
            0b00000000,   # IOCON
            0b00000000,   # IOCON
            0b00111111,   # GPPUA     Enable pull-ups on buttons
            0b00000000,   # GPPUB
            0b00000000,   # INTFA
            0b00000000,   # INTFB
            0b00000000,   # INTCAPA
            0b00000000,   # INTCAPB
            self.porta,   # GPIOA
            self.portb,   # GPIOB
            self.porta,   # OLATA
            self.portb ]) # OLATB

        # Switch to Bank 1 and disable sequential operation.
        # From this point forward, the register addresses do NOT match
        # the list immediately above.  Instead, use the constants defined
        # at the start of the class.  Also, the address register will no
        # longer increment automatically after this -- multi-byte
        # operations must be broken down into single-byte calls.
        self.i2c.bus.write_byte_data(
          self.i2c.address, self.MCP23017_IOCON_BANK0, 0b10100000)

        self.displayshift   = (self.LCD_CURSORMOVE |
                               self.LCD_MOVERIGHT)
        self.displaymode    = (self.LCD_ENTRYLEFT |
                               self.LCD_ENTRYSHIFTDECREMENT)
        self.displaycontrol = (self.LCD_DISPLAYON |
                               self.LCD_CURSOROFF |
                               self.LCD_BLINKOFF)

        self.write(0x33) # Init
        self.write(0x32) # Init
        self.write(0x28) # 2 line 5x8 matrix
        self.write(self.LCD_CLEARDISPLAY)
        self.write(self.LCD_CURSORSHIFT    | self.displayshift)
        self.write(self.LCD_ENTRYMODESET   | self.displaymode)
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)
        self.write(self.LCD_RETURNHOME)


    # ----------------------------------------------------------------------
    # Write operations

    # The LCD data pins (D4-D7) connect to MCP pins 12-9 (PORTB4-1), in
    # that order.  Because this sequence is 'reversed,' a direct shift
    # won't work.  This table remaps 4-bit data values to MCP PORTB
    # outputs, incorporating both the reverse and shift.
    flip = ( 0b00000000, 0b00010000, 0b00001000, 0b00011000,
             0b00000100, 0b00010100, 0b00001100, 0b00011100,
             0b00000010, 0b00010010, 0b00001010, 0b00011010,
             0b00000110, 0b00010110, 0b00001110, 0b00011110 )

    # Low-level 4-bit interface for LCD output.  This doesn't actually
    # write data, just returns a byte array of the PORTB state over time.
    # Can concatenate the output of multiple calls (up to 8) for more
    # efficient batch write.
    def out4(self, bitmask, value):
        hi = bitmask | self.flip[value >> 4]
        lo = bitmask | self.flip[value & 0x0F]
        return [hi | 0b00100000, hi, lo | 0b00100000, lo]


    # The speed of LCD accesses is inherently limited by I2C through the
    # port expander.  A 'well behaved program' is expected to poll the
    # LCD to know that a prior instruction completed.  But the timing of
    # most instructions is a known uniform 37 mS.  The enable strobe
    # can't even be twiddled that fast through I2C, so it's a safe bet
    # with these instructions to not waste time polling (which requires
    # several I2C transfers for reconfiguring the port direction).
    # The D7 pin is set as input when a potentially time-consuming
    # instruction has been issued (e.g. screen clear), as well as on
    # startup, and polling will then occur before more commands or data
    # are issued.

    pollables = ( LCD_CLEARDISPLAY, LCD_RETURNHOME )

    # Write byte, list or string value to LCD
    def write(self, value, char_mode=False):
        """ Send command/data to LCD """

        # If pin D7 is in input state, poll LCD busy flag until clear.
        if self.ddrb & 0b00000010:
            lo = (self.portb & 0b00000001) | 0b01000000
            hi = lo | 0b00100000 # E=1 (strobe)
            self.i2c.bus.write_byte_data(
              self.i2c.address, self.MCP23017_GPIOB, lo)
            while True:
                # Strobe high (enable)
                self.i2c.bus.write_byte(self.i2c.address, hi)
                # First nybble contains busy state
                bits = self.i2c.bus.read_byte(self.i2c.address)
                # Strobe low, high, low.  Second nybble (A3) is ignored.
                self.i2c.bus.write_i2c_block_data(
                  self.i2c.address, self.MCP23017_GPIOB, [lo, hi, lo])
                if (bits & 0b00000010) == 0: break # D7=0, not busy
            self.portb = lo

            # Polling complete, change D7 pin to output
            self.ddrb &= 0b11111101
            self.i2c.bus.write_byte_data(self.i2c.address,
              self.MCP23017_IODIRB, self.ddrb)

        bitmask = self.portb & 0b00000001   # Mask out PORTB LCD control bits
        if char_mode: bitmask |= 0b10000000 # Set data bit if not a command

        # If string or list, iterate through multiple write ops
        if isinstance(value, str):
            last = len(value) - 1 # Last character in string
            data = []             # Start with blank list
            for i, v in enumerate(value): # For each character...
                # Append 4 bytes to list representing PORTB over time.
                # First the high 4 data bits with strobe (enable) set
                # and unset, then same with low 4 data bits (strobe 1/0).
                data.extend(self.out4(bitmask, ord(v)))
                # I2C block data write is limited to 32 bytes max.
                # If limit reached, write data so far and clear.
                # Also do this on last byte if not otherwise handled.
                if (len(data) >= 32) or (i == last):
                    self.i2c.bus.write_i2c_block_data(
                      self.i2c.address, self.MCP23017_GPIOB, data)
                    self.portb = data[-1] # Save state of last byte out
                    data       = []       # Clear list for next iteration
        elif isinstance(value, list):
            # Same as above, but for list instead of string
            last = len(value) - 1
            data = []
            for i, v in enumerate(value):
                data.extend(self.out4(bitmask, v))
                if (len(data) >= 32) or (i == last):
                    self.i2c.bus.write_i2c_block_data(
                      self.i2c.address, self.MCP23017_GPIOB, data)
                    self.portb = data[-1]
                    data       = []
        else:
            # Single byte
            data = self.out4(bitmask, value)
            self.i2c.bus.write_i2c_block_data(
              self.i2c.address, self.MCP23017_GPIOB, data)
            self.portb = data[-1]

        # If a poll-worthy instruction was issued, reconfigure D7
        # pin as input to indicate need for polling on next call.
        if (not char_mode) and (value in self.pollables):
            self.ddrb |= 0b00000010
            self.i2c.bus.write_byte_data(self.i2c.address,
              self.MCP23017_IODIRB, self.ddrb)


    # ----------------------------------------------------------------------
    # Utility methods

    def begin(self, cols, lines):
        self.currline = 0
        self.numlines = lines
        self.numcols = cols
        self.clear()


    # Puts the MCP23017 back in Bank 0 + sequential write mode so
    # that other code using the 'classic' library can still work.
    # Any code using this newer version of the library should
    # consider adding an atexit() handler that calls this.
    def stop(self):
        self.porta = 0b11000000  # Turn off LEDs on the way out
        self.portb = 0b00000001
        sleep(0.0015)
        self.i2c.bus.write_byte_data(
          self.i2c.address, self.MCP23017_IOCON_BANK1, 0)
        self.i2c.bus.write_i2c_block_data(
          self.i2c.address, 0, 
          [ 0b00111111,   # IODIRA
            self.ddrb ,   # IODIRB
            0b00000000,   # IPOLA
            0b00000000,   # IPOLB
            0b00000000,   # GPINTENA
            0b00000000,   # GPINTENB
            0b00000000,   # DEFVALA
            0b00000000,   # DEFVALB
            0b00000000,   # INTCONA
            0b00000000,   # INTCONB
            0b00000000,   # IOCON
            0b00000000,   # IOCON
            0b00111111,   # GPPUA
            0b00000000,   # GPPUB
            0b00000000,   # INTFA
            0b00000000,   # INTFB
            0b00000000,   # INTCAPA
            0b00000000,   # INTCAPB
            self.porta,   # GPIOA
            self.portb,   # GPIOB
            self.porta,   # OLATA
            self.portb ]) # OLATB


    def clear(self):
        self.write(self.LCD_CLEARDISPLAY)


    def home(self):
        self.write(self.LCD_RETURNHOME)


    row_offsets = ( 0x00, 0x40, 0x14, 0x54 )
    def setCursor(self, col, row):
        if row > self.numlines: row = self.numlines - 1
        elif row < 0:           row = 0
        self.write(self.LCD_SETDDRAMADDR | (col + self.row_offsets[row]))


    def display(self):
        """ Turn the display on (quickly) """
        self.displaycontrol |= self.LCD_DISPLAYON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def noDisplay(self):
        """ Turn the display off (quickly) """
        self.displaycontrol &= ~self.LCD_DISPLAYON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def cursor(self):
        """ Underline cursor on """
        self.displaycontrol |= self.LCD_CURSORON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def noCursor(self):
        """ Underline cursor off """
        self.displaycontrol &= ~self.LCD_CURSORON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def ToggleCursor(self):
        """ Toggles the underline cursor On/Off """
        self.displaycontrol ^= self.LCD_CURSORON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def blink(self):
        """ Turn on the blinking cursor """
        self.displaycontrol |= self.LCD_BLINKON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def noBlink(self):
        """ Turn off the blinking cursor """
        self.displaycontrol &= ~self.LCD_BLINKON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def ToggleBlink(self):
        """ Toggles the blinking cursor """
        self.displaycontrol ^= self.LCD_BLINKON
        self.write(self.LCD_DISPLAYCONTROL | self.displaycontrol)


    def scrollDisplayLeft(self):
        """ These commands scroll the display without changing the RAM """
        self.displayshift = self.LCD_DISPLAYMOVE | self.LCD_MOVELEFT
        self.write(self.LCD_CURSORSHIFT | self.displayshift)


    def scrollDisplayRight(self):
        """ These commands scroll the display without changing the RAM """
        self.displayshift = self.LCD_DISPLAYMOVE | self.LCD_MOVERIGHT
        self.write(self.LCD_CURSORSHIFT | self.displayshift)


    def leftToRight(self):
        """ This is for text that flows left to right """
        self.displaymode |= self.LCD_ENTRYLEFT
        self.write(self.LCD_ENTRYMODESET | self.displaymode)


    def rightToLeft(self):
        """ This is for text that flows right to left """
        self.displaymode &= ~self.LCD_ENTRYLEFT
        self.write(self.LCD_ENTRYMODESET | self.displaymode)


    def autoscroll(self):
        """ This will 'right justify' text from the cursor """
        self.displaymode |= self.LCD_ENTRYSHIFTINCREMENT
        self.write(self.LCD_ENTRYMODESET | self.displaymode)


    def noAutoscroll(self):
        """ This will 'left justify' text from the cursor """
        self.displaymode &= ~self.LCD_ENTRYSHIFTINCREMENT
        self.write(self.LCD_ENTRYMODESET | self.displaymode)


    def createChar(self, location, bitmap):
        self.write(self.LCD_SETCGRAMADDR | ((location & 7) << 3))
        self.write(bitmap, True)
        self.write(self.LCD_SETDDRAMADDR)


    def message(self, text, truncate=NO_TRUNCATE):
        """ Send string to LCD. Newline wraps to second line"""
        lines = str(text).split('\n')    # Split at newline(s)
        for i, line in enumerate(lines): # For each substring...
            address = self.LINE_ADDRESSES.get(i, None)
            if address is not None:      # If newline(s),
                self.write(address)      #  set DDRAM address to line
            # Handle appropriate truncation if requested.
            linelen = len(line)
            if truncate == self.TRUNCATE and linelen > self.numcols:
                # Hard truncation of line.
                self.write(line[0:self.numcols], True)
            elif truncate == self.TRUNCATE_ELLIPSIS and linelen > self.numcols:
                # Nicer truncation with ellipses.
                self.write(line[0:self.numcols-3] + '...', True)
            else:
                self.write(line, True)



    def backlight(self, color):
        c          = ~color
        self.porta = (self.porta & 0b00111111) | ((c & 0b011) << 6)
        self.portb = (self.portb & 0b11111110) | ((c & 0b100) >> 2)
        # Has to be done as two writes because sequential operation is off.
        self.i2c.bus.write_byte_data(
          self.i2c.address, self.MCP23017_GPIOA, self.porta)
        self.i2c.bus.write_byte_data(
          self.i2c.address, self.MCP23017_GPIOB, self.portb)


    # Read state of single button
    def buttonPressed(self, b):
        return (self.i2c.readU8(self.MCP23017_GPIOA) >> b) & 1


    # Read and return bitmask of combined button state
    def buttons(self):
        return self.i2c.readU8(self.MCP23017_GPIOA) & 0b11111


    # ----------------------------------------------------------------------
    # Test code

if __name__ == '__main__':

    lcd = Adafruit_CharLCDPlate()
    lcd.begin(16, 2)
    lcd.clear()
    lcd.message("Adafruit RGB LCD\nPlate w/Keypad!")
    sleep(1)

    col = (('Red' , lcd.RED) , ('Yellow', lcd.YELLOW), ('Green' , lcd.GREEN),
           ('Teal', lcd.TEAL), ('Blue'  , lcd.BLUE)  , ('Violet', lcd.VIOLET),
           ('Off' , lcd.OFF) , ('On'    , lcd.ON))

    print "Cycle thru backlight colors"
    for c in col:
       print c[0]
       lcd.clear()
       lcd.message(c[0])
       lcd.backlight(c[1])
       sleep(0.5)

    btn = ((lcd.SELECT, 'Select', lcd.ON),
           (lcd.LEFT  , 'Left'  , lcd.RED),
           (lcd.UP    , 'Up'    , lcd.BLUE),
           (lcd.DOWN  , 'Down'  , lcd.GREEN),
           (lcd.RIGHT , 'Right' , lcd.VIOLET))
    
    print "Try buttons on plate"
    lcd.clear()
    lcd.message("Try buttons")
    prev = -1
    while True:
        for b in btn:
            if lcd.buttonPressed(b[0]):
                if b is not prev:
                    print b[1]
                    lcd.clear()
                    lcd.message(b[1])
                    lcd.backlight(b[2])
                    prev = b
                break

That showed up a little funny. Here’s a link to the git page link

I see that this code was uploaded 5 years ago, it might not be compatible with the current software. Try this code from Adafruit’s website: https://learn.adafruit.com/adafruit-16x2-character-lcd-plus-keypad-for-raspberry-pi/python-usage or see the code here:

"""Simple test for I2C RGB character LCD shield kit"""
import time
import board
import busio
import adafruit_character_lcd.character_lcd_rgb_i2c as character_lcd

# Modify this if you have a different sized Character LCD
lcd_columns = 16
lcd_rows = 2

# Initialise I2C bus.
i2c = busio.I2C(board.SCL, board.SDA)

# Initialise the LCD class
lcd = character_lcd.Character_LCD_RGB_I2C(i2c, lcd_columns, lcd_rows)

lcd.clear()
# Set LCD color to red
lcd.color = [100, 0, 0]
time.sleep(1)
# Print two line message
lcd.message = "Hello\nCircuitPython"
# Wait 5s
time.sleep(5)
# Set LCD color to blue
lcd.color = [0, 100, 0]
time.sleep(1)
# Set LCD color to green
lcd.color = [0, 0, 100]
time.sleep(1)
# Set LCD color to purple
lcd.color = [50, 0, 50]
time.sleep(1)
lcd.clear()
# Print two line message right to left
lcd.text_direction = lcd.RIGHT_TO_LEFT
lcd.message = "Hello\nCircuitPython"
# Wait 5s
time.sleep(5)
# Return text direction to left to right
lcd.text_direction = lcd.LEFT_TO_RIGHT
# Display cursor
lcd.clear()
lcd.cursor = True
lcd.message = "Cursor! "
# Wait 5s
time.sleep(5)
# Display blinking cursor
lcd.clear()
lcd.blink = True
lcd.message = "Blinky Cursor!"
# Wait 5s
time.sleep(5)
lcd.blink = False
lcd.clear()
# Create message to scroll
scroll_msg = "<-- Scroll"
lcd.message = scroll_msg
# Scroll to the left
for i in range(len(scroll_msg)):
    time.sleep(0.5)
    lcd.move_left()
lcd.clear()
time.sleep(1)
lcd.message = "Going to sleep\nCya later!"
time.sleep(5)
# Turn off LCD backlights and clear text
lcd.color = [0, 0, 0]
lcd.clear()

I tried running that file and had the same result: no errors, functional back-light, no text. Interestingly, the back-light turns on but not off at the end of the script.

I am not experienced with the Pi, but I did see a couple of potential issues to check.

First, I note that the code is assuming you have an RGB display rather than a monochrome, as you state you have. Could that be an issue?

Also, the Adafruit link mentions a requirement of Python version 3, and that it will not work with version 2.xx. Have you verified that you have version 3?

Finally, the Pi 1B is a very old version. Could there be some compatibility issues with this older version?

I’ve adjusted the code to use the non-RGB libraries (although the result is the same either way) and I’ve verified that I’m running Python 3. I’m going to borrow a Pi 3 from a friend to see if that fixes any issues. Thanks for the suggestions!